English, asked by Anonymous, 1 month ago

If the height of the cylinder is equal to its diameter and the volume is 58212 cubic cm, then find the CSA and TSA of the cylinder.​

Answers

Answered by MяMαgıcıαη
122

Given information,

If the height of the cylinder is equal to its diameter and the volume is 58212 cubic cm, then find the CSA and TSA of the cylinder.

  • Height of cylinder = Diameter of cylinder
  • Volume of cylinder = 58212 cubic cm
  • C.S.A of cylinder = ?
  • T.S.A of cylinder = ?

Let,

  • Height = Diameter = 2x

So,

  • Radius = Diameter/2 = 2x/2 = x

Using formula,

Volume of cylinder = πr²h

Where,

  • π = Pi
  • r = radius
  • h = height

We have,

  • π = 22/7
  • r = x
  • h = 2x
  • Volume = 58212 cubic cm

Putting all values,

➻ 58212 = 22/7 × x² × 2x

➻ 58212 = 22/7 × 2x³

➻ 58212 × 7/22 = 2x³

➻ 2646 × 7 = 2x³

➻ 18522 = 2x³

➻ x³ = 18522/2

➻ x³ = 9261

➻ x = cube root (9261)

➻ x = cube root (21 × 21 × 21)

x = 21

  • Henceforth, radius of base of cylinder is 21 cm.

Now,

◐ Height of cylinder = 2x

◐ Height of cylinder = 2 × 21

Height of cylinder = 42 cm

  • Henceforth, height of cylinder is 42 cm.

Using formula,

C.S.A of cylinder = 2πrh

Where,

  • π = Pi
  • r = radius
  • h = height

We have,

  • π = 22/7
  • r = 21 cm
  • h = 42 cm

Putting all values,

➻ C.S.A of cylinder = 2 × 22/7 × 21 × 42

➻ C.S.A of cylinder = 2 × 22 × 21 × 6

➻ C.S.A of cylinder = 44 × 126

C.S.A of cylinder = 5544 cm²

  • Henceforth, C.S.A of cylinder is 5544 cm².

Using formula,

T.S.A of cylinder = 2πr(r + h)

Where,

  • π = Pi
  • r = radius
  • h = height

We have,

  • π = 22/7
  • r = 21 cm
  • h = 42 cm

Putting all values,

➻ T.S.A of cylinder = 2 × 22/7 × 21(21+42)

➻ T.S.A of cylinder = 2 × 22/7 × 21 × 63

➻ T.S.A of cylinder = 2 × 22 × 21 × 9

➻ T.S.A of cylinder = 44 × 189

T.S.A of cylinder = 8316 cm²

  • Henceforth, T.S.A of cylinder is 8316 cm².

▬▬▬▬▬▬▬▬▬▬▬▬

Answered by TrustedAnswerer19
32

 \pink{ \boxed{\boxed{\begin{array}{cc} \bf \: \to \:  let  \: for \: the \: cylinder : \\  \\  \hookrightarrow \sf \:height \:  \:  = h \\  \\ \hookrightarrow \sf \:radius \:  \:  = r \\  \\  \therefore \sf \: diameter \: \:  \: d  =2r \\  \\  \\   \red{ \underline{\bf \: given \:  \: about \: the \: cylinder \: }}  \\  \\    \odot \: \sf \: volume \:  \: v =58212 \: cm {}^{3}   \\  \\ \odot  \sf \: height \:  = diameter \\  \\  \sf \implies \: h =d  \\  \\   \sf \implies \:  \boxed{ \sf \: h = 2r} \:  \:  \:  -  -  -  - (1)\end{array}}}}

 \underline{ \text{ we \: have \: to \: find \:  : }}

 \orange{ \boxed{\boxed{\begin{array}{cc} \hookrightarrow \sf \:curve \:  \:   \: surface  \:  \:  \: a rea \:   \:  \: (CSA) \\  \\ \hookrightarrow \sf \:total \:  \:  surface \:  \:  \:  area \:  \:  \: (TSA )\end{array}}}}

Formula will be used :

  \odot \:  \:  \:  \:  \green{ \boxed{\sf \: CSA = 2\pi \: rh}} \\  \\  \odot \:  \:  \:  \green{ \boxed{ \sf \: TSA = 2\pi \: r(r + h)}}

 \dag \:  \:  \red{ \boxed{ \sf \: volume \: of \: cylinder \:  \:  \: v = \pi {r}^{2} h}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \red{ \underline{ \bf \: solution}}

According to the question :

 \red{ \boxed{\boxed{\begin{array}{cc} \sf \: volume \:  \: v =  \: \pi {r}^{2} h \\  \\  \sf \implies \:58212 =   \frac{22}{7}    \times {r}^{2}  \times 2r \\  \\  \sf \implies \: {r}^{3} =  \frac{58212 \times 7}{ 22 \times 2}   \\  \\  \sf \implies \:r {}^{3} = 9261 \\  \\  \sf \implies \:r =  \sqrt[3]{9261} \\  \\  \sf \implies \:r = 21 \: cm \\  \\  \sf \: radius  \:  \: r = 21 \: cm \\  \\  \\  \therefore \sf \:  \: height \:  \: h = 2 \times 21 = 42 \: cm \\  \\  \\  \orange{ {\boxed{\begin{array}{cc} \sf \:  \: r = 21 \: cm \\  \\  \sf \: h = 42 \: cm\end{array}}}} \end{array}}}}

Now,

 \blue{ \boxed{\boxed{\begin{array}{cc} \sf \: CSA = 2\pi \: rh \\  \\  = 2 \times  \frac{22}{7} \times 21 \times42 \\  \\  = 5544 \:   \sf \:  \: {cm}^{2}  \end{array}}}}

 \blue{ \boxed{\boxed{\begin{array}{cc} \sf \: TSA = 2\pi \: r(r + h) \\  \\  = 2 \times  \frac{22}{7} \times 21(21 + 42) \\  \\  = 8361 \:  \sf {cm}^{2}  \end{array}}}}

 \therefore \:  \:  \orange{ \boxed{\boxed{\begin{array}{cc} \sf \: CSA = 5544 \:  {cm}^{2} \\  \\  \sf \: TSA  = 8361 \:  {cm}^{2} \end{array}}}}

Similar questions