Physics, asked by anshgarg889, 11 months ago


If the KE of a particle becomes four times its initial value, then the new momentum will be more than
its initial momentum by percent
(A) 50%
(C) 125%
(D) 150%
BY100%
A
: 10
Ashi:​

Answers

Answered by nirman95
30

Answer:

Given:

New KE is 4 times the initial value

To find:

% increase in momentum

Formulas used:

ke =  \dfrac{ {p}^{2} }{2m}

 =  > p =  \sqrt{2m(ke)}

Calculation:

Initial Momentum:

 =  > p1 =  \sqrt{2m(ke)}

Final Momentum:

 =  > p2 =  \sqrt{2m(4ke)}

 =  > p2 = 2 \times  \sqrt{2m(ke)}

 =  > p2 = 2 \times (p1)

So change in Momentum:

 \Delta p = p2 - p1

 =  >  \Delta p =2( p1) - p1

 =  >  \Delta p = \: p1

So, % Change in Momentum :

 =   \frac{ \Delta p}{p1}  \times 100\%

 =  \frac{p1}{p1}  \times 100\%

 = 100\%

So final answer is 100%

Answered by Anonymous
24

\huge{\underline{\underline{\red{\mathfrak{AnSwEr :}}}}}

  • Kinetic Energy is increased by 4 times

\small{\underline{\blue{\sf{Given :}}}}

\rule{200}{1}

\small{\underline{\green{\sf{Solution :}}}}

We have formula :

\large \star {\boxed{\sf{K.E \: = \: \dfrac{p^2}{2m}}}} \\ \\ \implies {\sf{p^2 \: = \: K.E \: \times \: 2m}} \\ \\ \implies {\sf{p \: = \: \sqrt{K.E \: (2m)}}}

\rule{200}{1}

  • Initial Momentum

\implies {\sf{p \: = \: \sqrt{K.E(2m)}}}

  • Final Momentum

\implies {\sf{p' \: = \: \sqrt{4( K.E)  \: (2m)}}} \\ \\ \implies {\sf{p' \: = \: 2 \sqrt{K.E(2m)}}} \\ \\ \implies {\sf{p' \: = \: 2p}}

Now, take change

\large \star{\boxed{\sf{\Delta p \: = \: p' \: - \: p}}} \\ \\ \implies {\sf{\Delta p \: = \: 2p \: - \: p}} \\ \\ \implies {\sf{\Delta p \: = \: p}}

\rule{200}{1}

As we know that Formula for change is :

\large \star {\boxed{\sf{Change \: = \: \dfrac{\Delta p}{p} \: \times \: 100 \%}}} \\ \\ \implies {\sf{Change \: = \: \dfrac{\cancel{p}}{\cancel{p}} \: \times \: 100 \%}} \\ \\ \implies {\sf{Change \: = \: 100 \: \%}}

Change is 100 %

Answer is (E)

Similar questions