Math, asked by hymi, 1 year ago

if the lateral surface are of cylinder is 94.2 cm2 and height is 5cm then find radius of base
it's volume (π=3.14)

Answers

Answered by pranavsethia19p2x0yo
15
Let the radius be r
CSA given= 94.2 cm^2
height given = 5 cm
94.2= 2×3.14×r×5
94.2=10×3.14r
94.2=31.4r
94.2/31.2=r
3 cm=r....

Now Volume = pie×r^2×h
= 3.14×9×5
=>141.3 cm^2
Answered by Anonymous
60

Answer:

{\large{\underline{\underline{\bf{Diagram : -}}}}}

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{3\ cm}}\put(9,17.5){\sf{5\ cm}}\end{picture}

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Given : -}}}}}

  • ↝ LSA of cylinder = 94.2 cm².
  • ↝ Height of cylinder = 5 cm

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{To  \: Find : -}}}}}

  • ↝ Radius of cylinder
  • ↝ Volume of cylinder

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Using  \: Formulae: -}}}}}

  • ↝ L.S.A of cylinder = 2πrh
  • ↝ Volume of cylinder = πr²h

\green\bigstar Where

  • ↠ L.S.A = Lateral surface area
  • ↠ π = 3.14
  • ↠ r = radius
  • ↠ h = height

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Solution: -}}}}}

\green\bigstar Here :-

  • ↠ L.S.A = 94.2 cm²
  • ↠ π = 3.14
  • ↠ h = 5 cm
  • ↠ r = ?

\begin{gathered}\end{gathered}

\green\bigstar According to the question :-

 \dashrightarrow\sf{L.S.A_{(cylinder)}= 2 \pi rh }

 \dashrightarrow\sf{94.2 \:  {cm}^{2} = 2  \times 3.14\times   r \times 5}

\dashrightarrow\sf{94.2 \:  {cm}^{2} = 10 \times 3.14\times   r  }

\dashrightarrow\sf{94.2 \:  {cm}^{2} = 31.4\times   r  }

\dashrightarrow\sf{94.2 \:  {cm}^{2} = 31.4r}

\dashrightarrow\sf{r = \dfrac{94.2}{31.4}}

\dashrightarrow\sf{r = \dfrac{94.2 \times 10}{31.4 \times 10}}

\dashrightarrow\sf{r = \dfrac{942}{314}}

\dashrightarrow\sf{r =  \cancel{\dfrac{942}{314}}}

\dashrightarrow\sf{r =3 \: cm}

\bigstar\red{\underline{\boxed{\bf{Radius \: of \: cylinder=3 \: cm}}}}

The Radius of Cylinder is 3 cm.

\begin{gathered}\end{gathered}

\green\bigstar Now, Calculating the volume of cylinder :-

\dashrightarrow\sf{Volume_{(Cylinder)} =   \pi {r}^{2} h}

\dashrightarrow\sf{Volume_{(Cylinder)} =   3.14 \times  {3}^{2} \times  5}

{\dashrightarrow\sf{Volume_{(Cylinder)} =   3.14 \times 3 \times 3\times  5}}

{\dashrightarrow\sf{Volume_{(Cylinder)} =   3.14 \times 9\times  5}}

{\dashrightarrow\sf{Volume_{(Cylinder)} =   3.14 \times 45}}

{\dashrightarrow\sf{Volume_{(Cylinder)} =  141 \:  {cm}^{2} }}

\bigstar{\red{\underline{\boxed{\bf{Volume \: of \: cylinder =  141 \:  {cm}^{2}}}}}}

The volume of cylinder is 141.1 cm².

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Learn  \: More : -}}}}}

  •  Volume of cylinder = πr²h
  •  T.S.A of cylinder = 2πrh + 2πr²
  •  Volume of cone = ⅓ πr²h
  •  C.S.A of cone = πrl
  •  T.S.A of cone = πrl + πr²
  •  Volume of cuboid = l × b × h
  •  C.S.A of cuboid = 2(l + b)h
  •  T.S.A of cuboid = 2(lb + bh + lh)
  •  C.S.A of cube = 4a²
  •  T.S.A of cube = 6a²
  •  Volume of cube = a³
  •  Volume of sphere = 4/3πr³
  •  Surface area of sphere = 4πr²
  •  Volume of hemisphere = ⅔ πr³
  •  C.S.A of hemisphere = 2πr²
  •  T.S.A of hemisphere = 3πr²

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Request : -}}}}}

  • ↝ If there is any difficulty viewing this answer in app, kindly see this answer at website Brainly.in for clear steps and understanding.
  • ↝ Here is the question link : https://brainly.in/question/2880758

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions