Math, asked by Instagramerankit, 9 months ago

if the length of a rectangle is doubled and the breadth is tripled. find the ratio of the original area to the new area of the rectangle​

Answers

Answered by VishalSharma01
120

Answer:

Step-by-step explanation:

Given :-

If the length of a rectangle is doubled and the breadth is tripled.

To Find :-

Ratio of the original area to the new area.

Solution :-

Let original length of rectangle be  x

And original breadth of rectangle be y.

Area of rectangle = Length × Breadth

Original area = xy.

Length is doubled = 2x

Breadth is tripled = 3y

New area of rectangle = 2x × 3y

New area of rectangle = 6 xy

Ratio of original area to new area = Original/new area

Ratio of original area to new area = xy/6xy

Ratio of original area to new area = 1/6

Ratio of original area to new area = 1 : 6

Hence, the Ratio of original area to new area is 1 : 6.

Answered by Anonymous
87

{\green{\underline{\underline{\huge{\mathbb{Question:-}}}}}}

If the length of a rectangle is doubled and the breadth is tripled. Find the ratio of the original area to the new area of the rectangle.

{\green{\underline{\underline{\huge{\mathbb{Solution:-}}}}}}

Let the length of the rectangle be= X.

Let the breadth of the rectangle be= Y.

{\red{\boxed{\bold{Area\:of\: rectangle\:= length× breadth}}}}

So, area of the rectangle= XY

If the length of the rectangle is doubled ,

Then the length of the rectangle=2x

If the breadth of the rectangle is tripled,

Then the breadth of the rectangle=3y

Now ,

The area of the rectangle= 2x × 3y

=6xy

So, the ratio of the original area to the new area ,

Original area : New area

xy :6xy

→ 1:6

{\red{\large{\boxed{\bold{Original\:area\:: New\: area=1:6}}}}}

{\green{\underline{\underline{\huge{\mathbb{Answer:-}}}}}}

The ratio of the original area to the new area is 1:6.

Similar questions