Math, asked by futurearchaeologist, 2 months ago

If the length of diagonal of a cube is 13√3 cm, find its surface area.​

Answers

Answered by saitheking
2

Answer:

C.S.A of a cube = 676 cm^2                                                                                                T.S.A of a cube = 1014 cm^2

Step-by-step explanation: Length of a cube = 13(square root )3 cm

                                             length of a cube= {13(square root )3}/(SQUARE                                                                                                                                                            root of  3)

                                                length of a cube =13 cm

                                            #C.S.A of a cube = 4(a)^2

                                                                          =4(13)^2

                                                                          =4(169)

                                                                          =676 cm^2

                                             #T.S.A of a cube = 6(a)^2

                                                                          =6(13)^2

                                                                          =6(169)

                                                                          =1014 cm^2

Answered by SteffiPaul
0

The surface area of the cube is 1014 square centimeters.

Given:

The length of the diagonal of the cube is (a) = 13√3 cm.

To Find:

The Surface Area of the cube =?

Solution:

We know that the length of the side diagonal of a cube of side length 'l' cm is l√2 cm whereas the length of the body diagonal of the cube is l√3 cm.

Here, we have given the length of the body diagonal of the cube 13√3 cm.

i.e.,   l√3  = 13√3

∴ l = 13 cm.

Now, we have the formula to calculate the surface area of the cube;

The surface area of the cube = 6l²

∴ The Surface area of the cube = 6(13²)

∴ The Surface area of the cube = 6 × 169

∴ The Surface area of the cube = 1014 cm²

Thus, its surface area is 1014 square centimeters.

#SPJ3

Similar questions