Math, asked by taimoor300at, 1 month ago

If the line (3x – y + 5) + K(2x - 3y - 4) = 0 is parallel to y-axis, then K= -1 (A (D) O ( (B) i Tim (C) 1: C 5​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

(3x - y + 5) + K(2x - 3y - 4) = 0 \\

 \implies \: 3x - y + 5 + 2 K x - 3 K y - 4 K  = 0 \\

 \implies \:( 3 +  2K) x - (1 +  3K) y + (5   - 4 K)  = 0 \\

Slope of this line is 0, because the line is parallel to x-axis,

 \frac{3 +  2K }{1 + 3 K }  = 0 \\

  \implies \: K  =  - \frac{3}{2}  \\

so, the required line is,

 \implies \: \bigg \{3  -  2  \bigg(\frac{3}{2}  \bigg)  \bigg \} x - \bigg \{1  -   3 \bigg( \frac{3}{2}  \bigg) \bigg \} y +  \bigg \{5    + 4   \bigg(  \frac{3}{2} \bigg)\bigg \}  = 0 \\

 \implies \:  \{3  -  3  \} x - \bigg \{1  -   \frac{9}{2}  \bigg \} y +   \{5    + 6  \}  = 0 \\

 \implies \:  - \bigg \{ -   \frac{7}{2}  \bigg \} y +  11 = 0 \\

 \implies \:     7 y +  22 = 0 \\

Similar questions