Math, asked by Tanvi86791, 11 months ago

If the line ax + y = c, touches both the curves x² + y² = 1 and y² - 4√(2) x , then |c| is equal to (A) 1/√2
(B) √2
(C) 1/2
(D) 2

Answers

Answered by Rohit18Bhadauria
0

\rule{300}{2}

\huge\boxed{\underline{\mathcal{\red{A}\green{N}\pink{S}\orange{W}\blue{E}\pink{R:-}}}}

See these 2 attachments

This is the best possible answer

\large{\boxed{\mathbf\pink{\fcolorbox{cyan}{black}{Hope\:you\:have}}}}

\large{\boxed{\mathbf\pink{\fcolorbox{red}{yellow}{Understood}}}}

<marquee>♥️Please mark it as♥️</marquee>

\huge\underline\mathcal\red{Brainliest}

</p><p>\huge{\boxed{\mathbb\green{\fcolorbox{red}{blue}{Thank\:You}}}}

\rule{300}{2}

Attachments:
Answered by sanjeevk28012
0

The value of \left | c \right | for the given line is √2  .

Step-by-step explanation:

Given as :

The line equation is a x + y = c

The line touches the curves x² + y² = 1 and  y² = 4√2 x

Tangent to the  y² = 4√2 x is  y = m x + \dfrac{\sqrt{2} }{m}

And,

It is tangent to the circle x² + y² = 1

∴  \left | \dfrac{\dfrac{\sqrt{2}}{m}}{\sqrt{1+m^{2}}} \right |   =  1

Or, \dfrac{\sqrt{2} }{m}  = \sqrt{1+m^{2} }

Squaring both sides

[ \dfrac{\sqrt{2} }{m} ]²  = [ \sqrt{1+m^{2} }

\dfrac{2}{m^{2} }   =  1 + m²

Or,  m^{4}+m^{2}-2  = 0

Or, m^{4} + 2 m² - m² - 2 = 0

Or, m² ( m² + 2 ) - 1 ( m² +2 ) = 0

Or, ( m² +2 ) ( m² - 1 ) = 0

    m = 1 , m = - 1

So, Tangents are y = x + √2     ,    y = - x - √2

Now, Compare with  y = - a x + c

Therefore ,  a = \pm 1   ,   c  =  \pm√2

So, The value of  \left | c \right |  = √2

Hence, The value of \left | c \right | for the given line is √2  . Answer

Similar questions