Math, asked by rehana04, 9 months ago

if the line (x-y+1) + k(y-2k+4) =0 makes equal intercepts on the axes . Then what is the value of k ?​

Answers

Answered by MaheswariS
2

\textbf{Given:}

\text{Equation of the line is (x-y+1)+k(y-2k+4)=0}

\textbf{To find:}

\text{The value of k}

\textbf{Solution:}

\text{Consider,}

(x-y+1)+k(y-2k+4)=0

x+(k-1)y-2k^2+4k+1=0

x+(k-1)y=2k^2-4k-1

\text{Divide both sides by $2k^2-4k-1$}

\dfrac{x}{2k^2-4k-1}+\dfrac{(k-1)y}{2k^2-4k-1}=1

\dfrac{x}{2k^2-4k-1}+\dfrac{y}{\dfrac{2k^2-4k-1}{k-1}}=1

\text{Comparing this with}

\bf\,\dfrac{x}{a}+\dfrac{y}{b}=1

\text{we get}

\text{x-intercept,}\;a=2k^2-4k-1

\text{y-intercept,}\;b=\dfrac{2k^2-4k-1}{k-1}

\text{But,}\;a=b

2k^2-4k-1=\dfrac{2k^2-4k-1}{k-1}

1=\dfrac{1}{k-1}

k-1=1

\implies\boxed{\bf\,k=2}

\therefore\textbf{The value of k is 2}

Find more:

Equation of the line having intercepts a,b on the axes such that a+b=5 ,ab=6 is

https://brainly.in/question/8573548

Find the equation of line passing through the point (5,6) and making equal intercept on x & y axis​

https://brainly.in/question/13417461

Similar questions