If the mean of the following frequency distribution is 91, and sum of frequencies is 150, find the missi
frequency x and y:
120 - 150
Classes
60 - 90
30 - 60
0 - 30
150 - 180
90 - 120
Frequency
12
21
x
52
y
26.
11
Answers
Answer:
x = 34
y = 20
Step-by-step explanation:
Let's workout the midpoint for each class.
Midpoint =(lower limit + upper limit)/2
Let's call the midpoint M.
Working out M for each class we have:
Class M M × Frequency
0 - 30 15 180
30 - 60 45 945
60 - 90 75 75x
90 - 120 105 5460
120 - 150 135 135y
150 - 180 165 1815
x + y = 150 - (12 + 21 + 52 + 11) = 54
Mean = ∑f.M/∑f
∑f.M = 180 + 945 + 75x + 5460 + 135y + 1815 = 8400 + 75x + 135y
91 = (8400 + 75x + 135y)/ 150
91 × 150 = 8400 + 75x + 135y
13650 = 8400 + 75x + 135y
75x + 135y = 5250
We have two simultaneous equations:
x + y = 54.............................. i)
75x + 135y = 5250 ..............................ii)
Multiply i by 75 and get the difference between the two equations.
75x + 75y = 4050 .........................iii)
75x + 135y = 5250............................iv)
60y = 1200
y = 20
20 + x = 54
x = 54 - 20 = 34