Math, asked by shubhamrasiyal30, 6 months ago

if the mth term of an H.P. be n and nth term be m, show that the pth term is mn/p

Answers

Answered by deepikamr06
0

Step-by-step explanation:

Given that,mthterm of an H.P. is n and nth term is m.

Therefore, mth term of an A.P. is n1 and nth term is m1.

Let, a be the first term and d be the common difference of the A.P

Now, tm=a+(m−1)d=n1          ....(1)

And tn=a+(n−1)d=m1         ....(2)

Subtracting (1) & (2), we get

(m−n)d=n1−m1

⇒d=mn1

Substituting d in (1), we get

a+mn(m−1)=n1       ⇒a=mn1

Therefore, tmn=a+(mn−1)d=mn1+mn

Answered by snehitha2
4

\underline{\underline{\bf Harmonic \ Progression:}}

  • The progression formed by the reciprocal of Arithmetic Progression.
  • It is the sequence of numbers formed by taking the reciprocals of AP
  • For example,  

             a,b,c,d... are in AP, then 1/a , 1/b , 1/c , 1/d ... is considered as HP.

  • General form :

          1/a , 1/(a + d) , 1/(a + 2d) , 1/(a + 3d) , ...

  • Harmonic Mean,

              \bf = \frac{n}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+...}

     where n is the number of terms

  • nth term of HP is given by the reciprocal of nth term of AP

          \bf n^{th} \ term \ of \ HP=\frac{1}{a+(n-1)d}

   where

     a - first term of AP

     d - common difference      

_______________________________              

Step-by-step explanation :

Given,

  • mth term of HP = n
  • nth term of HP = m

\implies m^{th} \ term=\frac{1}{a+(m-1)d} \\\\ n=\frac{1}{a+(m-1)d} \\\\ \boxed{\bf a+(m-1)d=\frac{1}{n}} --[1] \\\\\\\\ \implies  n^{th} \ term=\frac{1}{a+(n-1)d} \\\\ m=\frac{1}{a+(n-1)d} \\\\  \boxed{\bf a+(n-1)d =\frac{1}{m}}--[2]

Substract equation [1] from [2]

a + (n - 1)d - [a + (m - 1)d] = 1/m - 1/n

a + nd - d - [a + md - d] = 1/m - 1/n

a + nd - d - a - md + d = (n - m)/mn

       d(n - m) = (n - m)/mn

             d = 1/mn

Substitute  d = 1/mn  in equation [1]

          a+(m-1)d=\frac{1}{n} \\\\ a+(m-1)\frac{1}{mn}=\frac{1}{n} \\\\ a+\frac{m-1}{mn} =\frac{1}{n} \\\\ \frac{mna+(m-1)}{mn}=\frac{1}{n} \\\\ \frac{mna+m-1}{m}  =1 \\\\ mna+m-1=m \\\\ mna-1=0 \\\\ mna=1 \\\\ \bf a=\frac{1}{mn}

we know,

   \bf n^{th} \ term \ of \ HP=\frac{1}{a+(n-1)d}

  \bf p^{th} \ term \ of \ HP =\frac{1}{\frac{1}{mn}+(p-1)(\frac{1}{mn})}

                              \bf =\frac{1}{\frac{1}{mn}+\frac{p-1}{mn} } \\\\ =\frac{1}{\frac{1+p-1}{mn} } \\\\ =\frac{mn}{p}

  Hence proved!

Similar questions