Math, asked by CHRISWEL, 4 months ago

If the numerator and denominator of a fraction are increased by 2 and 1

respectively, it becomes ¾  If the numerator and denominator are decreased by 2

and 1 repectively, it becomes ½ Find the fraction​

Answers

Answered by BrainlyRish
2

❍ Let's Assume the Numerator and Denominator of fraction be x and y respectively.

Then ,

  • The Original Fraction = \dfrac{x}{y}

Case I ) If the numerator and denominator of a fraction are increased by 2 and 1 respectively, it becomes ¾ .

Therefore,

  • \therefore The \:Fraction = \dfrac{x + 2 }{y + 1} = \dfrac{3}{4}

Then ,

\qquad\qquad :\implies \sf{ \dfrac{x + 2 }{y + 1} = \dfrac{3}{4}}\\\\

  • By Cross Multiplication :

\qquad\qquad :\implies \sf{ \dfrac{x + 2 }{y + 1} = \dfrac{3}{4}}\\\\

\qquad\qquad :\implies \sf{ 4(x + 2) = 3 (y + 1) }\\\\

\qquad\qquad :\implies \sf{ 4x-3y + 8 = 1 }\\\\

\qquad\qquad :\implies \sf{ 4x-3y = 1-8 }\\\\

\qquad\qquad :\implies \bf{\bigg( 4x-3y = -7\bigg) }\longrightarrow \sf{Eq.1}\\\\

Case II ) If the numerator and denominator are decreased by 2 and 1 repectively, it becomes ½

Therefore,

  • \therefore The \:Fraction = \dfrac{x -2 }{y - 1} = \dfrac{1}{2}

Then ,

\qquad\qquad :\implies \sf{ \dfrac{x - 2 }{y - 1} = \dfrac{1}{2}}\\\\

  • By Cross Multiplication :

\qquad\qquad :\implies \sf{ \dfrac{x- 2 }{yy- 1} = \dfrac{1}{2}}\\\\

\qquad\qquad :\implies \sf{ 2(x - 2) = 1 (y - 1) }\\\\

\qquad\qquad :\implies \sf{ 2x - 4 = y - 1 }\\\\

\qquad\qquad :\implies \sf{ 2x - 4 - y =  - 1 }\\\\

\qquad\qquad :\implies \sf{ 2x  - y =  - 1 + 4 }\\\\

\qquad\qquad :\implies \bf{\bigg( 2x-y = 3\bigg) }\longrightarrow \sf{Eq.2}\\\\

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: doing\:Elimination \;method\: in \: Eq.1\:\&\:Eq.2 \:  \::}}\\

  • \qquad\qquad :\implies \bf{\bigg( 4x-3y = -5\bigg) }\longrightarrow \sf{Eq.1}\\\\

  • \qquad\qquad :\implies \bf{\bigg( 2x-y = 3\bigg) }\longrightarrow \sf{Eq.2}\\\\

Now ,

  • Multiply Eq.2 by 2 to get it's one variable is equal to the Eq.1 :

\qquad\qquad :\implies \bf{\bigg( 2x-y = 3\bigg) }\longrightarrow \sf{Eq.2}\\\\

\qquad\qquad :\implies \sf{ 2x  - y =  3 }\\\\

  • Multiplying by 2 we get as Eq.2 ,

  • \qquad\qquad :\implies \bf{\bigg( 4x-2y = 6\bigg) }\longrightarrow \sf{Eq.2}\\\\

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Eliminating \: one \: variable \:  \::}}\\

\boxed{\begin {array}{ccc}\\ \sf{\cancel {4x}} & \sf{-3y} & =\sf{-5}\\\\\sf{\cancel {4x}}&\sf{-2y}&=\sf{\:6} \\\\ \sf{-}&\sf{+}&\sf{-}\\\\ \underline {\qquad \qquad}&\underline {\qquad \quad}&\underline {\qquad \quad}\\\\ \sf{\:}&\sf{-y}&=\sf{-11}\end {array}}

\qquad\qquad :\implies \sf{ - y =  - 11 }\\\\ [ - sign will be eliminated]

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  y = 11\: }}}}\:\bf{\bigstar}\\

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Substituting \: y=11 \: in\:Eq.2::}}\\

\qquad\qquad :\implies \sf{ 2x  - y =  3 }\\\\

\qquad\qquad :\implies \sf{ 2x  - 11 =  3 }\\\\

\qquad\qquad :\implies \sf{ 2x   =  3 +11}\\\\

\qquad\qquad :\implies \sf{ 2x   =  14 }\\\\

\qquad\qquad :\implies \sf{ x   =  \dfrac{14}{2} }\\\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  x = 7\: }}}}\:\bf{\bigstar}\\

Thus ,

  • The Numerator is x = 7

  • The Denominator is y = 11

Then ,

  • The Original Fraction = \sf{\dfrac{x}{y}= \dfrac{7}{11}}

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Hence \: The\:Original \:Fraction \:is\:\bf{\dfrac{7}{11}\: }}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions