Math, asked by gk9104702213, 10 months ago

If the numerator of a fraction is decrease by 2, its value becomes 1/3, if the denominator increase by 1, its value becomes 1/2 . Find the fraction

Answers

Answered by Anonymous
12

\huge\mathfrak\blue{Answer:}

Given:

  • We have been given a fraction
  • If number is decreased by 2 its value becomes 1/3
  • If denominator is increased by 1 its value become 1/2

To Find:

  • We have to find the original fraction

Solution:

Let the numerator = x

And Denominator = y

Therefore

\boxed{\sf{Original \: Fraction = \dfrac{x}{y} } }

______________________________

\underline{\bold{\large \mathtt\purple{According \: to \: the \: Question:}} }

When numerator is decreased by 2 the value of fraction becomes 1/3

\implies \sf{\dfrac{x-2}{y} = \dfrac{1}{3} }

Cross Multiplying the Terms

\implies \sf{3 \: (x-2) = y }

\implies \boxed{\sf{3x - 6= y} } ------------------ ( 1 )

When denominator is increased by 1 the value of fraction becomes 1/2

\implies \sf{\dfrac{x}{y+1} = \dfrac{1}{2}}

\implies \sf{2x = y+1 }

Putting value of y from Equation ( 1 )

\implies \sf{2x = (3x - 6) + 1}

\implies \sf{2x = 3x - 5}

\implies \boxed{\sf{x = 5 }}

_______________________________

Putting x = 5 in Equation 1 we get

\implies \sf{y = (3 \times 5) - 6}

\implies \sf{ y = 15 - 6}

\implies \boxed{\sf{y = 9}}

Hence original fraction is 5/9

\large\boxed{\sf{Original \: Fraction = \dfrac{5}{9}}}

_______________________________

\huge\mathfrak{Verification:}

1 ) When numerator is decreased by 2 the value fraction becomes 1/3

\implies \sf{ Fraction = \dfrac{5-2}{9}}

\implies \sf{\dfrac{3}{9}}

\implies \boxed{\sf{\: Ratio = \dfrac{1}{3} \:} }

2 ) When denominator is increased by 1 the value of fraction become 1/2

\implies \sf{ Fraction = \dfrac{5}{9+1}}

\implies \sf{ \dfrac{5}{10}}

\implies \boxed{\sf{\: Ratio = \dfrac{1}{2} \:} }

Hence Verified !!!

Answered by nisha382
159

\huge{\boxed{\rm{\red{Answer:-}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

{\red{\bold{\underline{\underline{Given:-}}}}}

  • \bold{If \ the \ numerator \ of \ a \ fraction \ decrease \ by \ 2 \ it \ becomes \ 1/3}
  • \bold{If \ the \ denominator \ increase \ by \ 1 \ it \ becomes \ 1/2}

{\green{\bold{\underline{\underline{To\:find\::-}}}}}

  • \bold{The \ fraction}

{\purple{\bold{\underline{\underline{Solution:-}}}}}

\bold{Let \ the \ numerator \ be \ x \ and \ the \ denominator \ be \ y}

⛬The fraction will be \mathsf{ \dfrac{x}{y}}

\bold{According \ to \ the \ Q}

\mathsf{ \dfrac{x-2}{y}}=\mathsf{ \dfrac{1}{3}}

\implies\bold{3x-6=y}

\implies\bold{3x-y=6}........(i)

\bold{Again,}

\mathsf{ \dfrac{x}{y+1}}=\mathsf{ \dfrac{1}{2}}

\implies\bold{2x=y+1}

\implies\bold{2x-y=1}.........(ii)

\bold{Substracting \ (ii) \ from \ (i) \ we \ get}

\implies\bold{x=5}

\bold{Putting \ the \ value \ of \ x \ in \ eq \ (ii)}

\bold{\: \: \: \: \: \: \: \: \: \:(2×5)-y=2}

\implies\bold{(-y)=2-10}

\implies\bold{(-y)=(-8)}

\implies\bold{y=8}

\bold{Hence \ value \ of \ x \ is \ 5 \ and \ value \ of \ y \ is \ 8}

⛬The fraction will be \mathsf{ \dfrac{5}{8}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\huge\bold\green{Hope\:this\:help\:you}

Similar questions