Math, asked by saivamshikavtam, 30 days ago

if the numerator of the fraction is increased by 40% and the denominator is increased by 50% and the resultant fraction is 2/5.What is the original fraction​

Answers

Answered by atulagarwal270981
12

Answer:

20/10 is the original fraction

Answered by BrainlyTwinklingstar
4

Answer

Let the numerator be x.

Let the denominator be y.

Let the original fraction be \sf \dfrac{x}{y}

According to the question,

\sf \dashrightarrow \dfrac{x + 40\% \: of \: x}{y + 50\% \: of \: y} = \dfrac{2}{5}

\sf \dashrightarrow \dfrac{x + \dfrac{40}{100} \times x}{y + \dfrac{50}{100} \times y} = \dfrac{2}{5}

\sf \dashrightarrow \dfrac{x + \dfrac{40x}{100}}{y + \dfrac{50y}{100}} = \dfrac{2}{5}

\sf \dashrightarrow \dfrac{x + \dfrac{2x}{5}}{y + \dfrac{1y}{2}} = \dfrac{2}{5}

\sf \dashrightarrow \dfrac{\dfrac{5x + 2x}{5}}{\dfrac{2y + 1y}{2}} = \dfrac{2}{5}

\sf \dashrightarrow \dfrac{\dfrac{7x}{5}}{\dfrac{3y}{2}} = \dfrac{2}{5}

\sf \dashrightarrow \dfrac{x}{y} = \dfrac{2}{5} \times \dfrac{3}{2} \times \dfrac{5}{7}

\sf \dashrightarrow \dfrac{x}{y} = \dfrac{1}{1} \times \dfrac{3}{1} \times \dfrac{1}{7}

\sf \dashrightarrow \dfrac{x}{y} = \dfrac{3}{7}

Hence, the original fraction is \sf \dfrac{3}{7}.

Similar questions