Math, asked by aarshwankar595, 1 month ago

If the origin is the orthocentre of the triangle formed by the points (5, -1), (-2, 3), and (c, d), then find its third vertex.

Answers

Answered by senboni123456
2

Step-by-step explanation:

Let the coordinates of triangle be A(5,-1),\:B(-2,3),\:C(c,d)

Since, origin O(0,0) is the orthocentre, then we have,

 m_{AO}\times\:m_{BC}=-1

  \implies \frac{0 - ( - 1)}{0 - 5} . \frac{d - 3}{c - ( - 2)}  =  - 1   \\

  \implies \frac{1}{- 5} . \frac{d - 3}{c  + 2}  =  - 1  \\

  \implies \: d - 3 =    5(c + 2)  \\

  \implies \: 5c + 10 =   d   - 3 \\

   \tt\implies \: \purple{ \bold{ 5c - d   +    13 = 0 }} \:  \:  \:  \: ....(i)\\

Also,

 m_{BO}\times\:m_{AC}=-1

 \implies \frac{0 - 3}{0 - ( - 2)} .\frac{d - ( - 1)}{c - 5} =  - 1   \\

 \implies \frac{- 3}{ 2} .\frac{d  +  1}{c - 5} =  - 1   \\

 \implies \frac{3}{ 2} .\frac{d  +  1}{c - 5} =   1   \\

 \implies 3(d  +  1) =   2(c - 5)   \\

 \implies 3d  +  3=   2c - 10   \\

 \tt \implies   \purple{ \bold{    2c - 3d - 13 = 0 }}  \:  \:  \: ....(ii) \\

From (i) and (ii),

    5c - d   +    13 = 0  \\ 2c - 3d - 13 = 0

By cross multilication, we have,

 \frac{c}{( - 1)( - 13) - ( - 3)(13)} =  \frac{d}{(13)(2) - ( - 13)(5)}   =  \frac{1}{(5)( - 3) - (2)( - 1)}  \\

 \implies \frac{c}{ 13  +  39} =  \frac{d}{26 + 65}   =  \frac{1}{- 15  + 2}  \\

 \implies \frac{c}{ 52} =  \frac{d}{91}   =  \frac{1}{- 13}  \\

 \implies c = \frac{52}{ - 13}   \: \:  \: and \:  \:  \:   d   =  \frac{91}{- 13}  \\

 \implies c =  - 4   \: \:  \: and \:  \:  \:   d   =   - 7 \\

 \sf\:\red{Hence,\: required\:coordinates \: of \:3^{rd}\:vertex\: is\:(-4,-7)}

Similar questions