. If the perimeter of a rhombus is 100 cm and one of the diagonals is 40 cm, then the area of the rhombus is in square centimetres is
Answers
- Perimeter of rhombus = 100cm.
- Diagonal(1) = 40cm.
- Area of rhombus.
All sides of rhombus are equal.
So,
- Perimeter = 4 × side
↪ 100 = 4 side
↪ Side = 25cm
Side of rhombus is 25cm.
⋆⋆⋆⋆ Diagonal bisect each other at right angle.
From figure ,
➛ 25² = 20² + x²
➛ 625 = 400 + x²
➛ x² = 625 - 400
➛ x² = 225
➛ x = 15cm
Second diagonal d(2) = 2x = 30cm
Therefore , area of rhombus is 600cm².
Given:
- Perimeter = 100 cm
- Diagonal₍₁₎ = 40 cm
To find:
☞ Area of rhombus = ?
Method:
Perimeter = 4 × side
⇒ 100 = 4 × side
⇒ Side = 100 ÷ 4
⇒ Side = 25 cm
So AB = BC = CD = DA = 25 cm
Length of diagonal = 40 cm
⇒ AC = 40 cm
⇒ AO + OC = 40 cm
⇒ AO + AO = 40 cm [∵ AO = OC]
⇒ 2AO = 40 cm
⇒ AO = 40 ÷ 2
⇒ AO = 20 cm
In ΔAOD,
By Pythagoras theorem,
(AD)² = (AO)² + (OD)²
⇒ (25)² = (20)² + (OD)²
⇒ 625 = 400 + (OD)²
⇒ (OD)² = 625 - 400
⇒ (OD)² = 225
⇒ (OD) = √225
⇒ OD = ±15
Side cannot be negative.
∴ OD = 15 cm
Diagonal₍₂₎ = OD + OB
⇒ Diagonal₍₂₎ = 2(OD)
⇒ Diagonal₍₂₎ = 2 × 15
⇒ Diagonal₍₂₎ = 30 cm
Area of Rhombus = (Diagonal₍₁₎ × Diagonal₍₂₎) ÷ 2
⇒ Area = (40 × 30) ÷ 2