Math, asked by kollasrinivas87654, 4 months ago

. If the perimeter of a rhombus is 100 cm and one of the diagonals is 40 cm, then the area of the rhombus is in square centimetres is​

Answers

Answered by Anonymous
6

 \\  \\ \large\underline{ \underline{ \sf{ \red{given:} }}}  \\  \\

  • Perimeter of rhombus = 100cm.

  • Diagonal(1) = 40cm.

 \\  \\ \large\underline{ \underline{ \sf{ \red{to \: find:} }}}  \\  \\

  • Area of rhombus.

 \\  \\ \large\underline{ \underline{ \sf{ \red{solution:} }}}  \\  \\

All sides of rhombus are equal.

So,

  • Perimeter = 4 × side

↪ 100 = 4 side

↪ Side = 25cm

Side of rhombus is 25cm.

⋆⋆⋆⋆ Diagonal bisect each other at right angle.

From figure ,

➛ 25² = 20² + x²

➛ 625 = 400 + x²

➛ x² = 625 - 400

➛ x² = 225

x = 15cm

Second diagonal d(2) = 2x = 30cm

 \\   \small \bigstar \boxed{ \bf \: area \: of \: rhombus =  \frac{product \: of \: two \: diagonals}{2} }

 \\  \sf \: area =  \frac{40  \times 30}{2}  \\  \\  \sf \:  area =  \frac{1200}{2}  \\  \\  \boxed{\sf \:  \pink{area = 600 {cm}^{2} }}

Therefore , area of rhombus is 600cm².

Attachments:
Answered by Aryan0123
12

Given:

  • Perimeter = 100 cm
  • Diagonal₍₁₎ = 40 cm

To find:

☞ Area of rhombus = ?

Method:

Perimeter = 4 × side

⇒ 100 = 4 × side

⇒ Side = 100 ÷ 4

Side = 25 cm

So AB = BC = CD = DA = 25 cm

Length of diagonal = 40 cm

⇒ AC = 40 cm

⇒ AO + OC = 40 cm

⇒ AO + AO = 40 cm           [∵ AO = OC]

⇒ 2AO = 40 cm

⇒ AO = 40 ÷ 2

AO = 20 cm

In ΔAOD,

By Pythagoras theorem,

(AD)² = (AO)² + (OD)²

⇒ (25)² = (20)² + (OD)²

⇒ 625 = 400 + (OD)²

⇒ (OD)² = 625 - 400

⇒ (OD)² = 225

⇒ (OD) = 225

⇒ OD =  ±15

Side cannot be negative.

OD = 15 cm

Diagonal₍₂₎ = OD + OB

⇒ Diagonal₍₂₎ = 2(OD)

⇒ Diagonal₍₂₎ = 2 × 15

Diagonal₍₂₎ = 30 cm

Area of Rhombus = (Diagonal₍₁₎ × Diagonal₍₂₎) ÷ 2

⇒ Area = (40 × 30) ÷ 2

∴ Area = 600 cm²

Attachments:
Similar questions