French, asked by MsAttitude01, 5 months ago

if the perimeter of an equilateral triangle is 360 cm. Then its area will be​

Answers

Answered by Fαírү
124

Answer:

 \huge  \ast\bold { \underline{ \underbrace{ \underline {\textsf{ \pink{given:-}}}}}} \ast

The perimeter of an equilateral triangle = 360 cm

 \\  \\

 \huge  \ast\bold { \underline{ \underbrace{ \underline {\textsf{ \orange{To \:find:-}}}}}} \ast

Area of the equilateral triangle=?

 \\  \\

 \huge  \ast\bold { \underline{ \underbrace{ \underline {\textsf{ \blue{Formula:-}}}}}} \ast

 \bold \blue{ \:  \:  \:  \:  \: 3a   \implies \: perimeter}

\begin{gathered}\bold\rm\purple \frac{\sqrt{3}}{4} a² \\ \sf\end{gathered}

 \\  \\

 \huge  \ast\bold { \underline{ \underbrace{ \underline {\textsf{ \red{Diagram:-}}}}}} \ast

 \setlength{ \unitlength}{1cm}  \\ {picture}(0,0) \thicklines \qbezier(1,0)(1,0)(3,3) \qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.85,3.2){$\bf A$}\put(0.5,-0.3){$\bf C$}\put(5.2,-0.3){$\bf B$}\end{picture}

 \\  \\

 \huge  \ast\bold { \underline{ \underbrace{ \underline {\textsf{ \pink{Concept}}}}}} \ast

As provided in the given Question , First we will find the perimeter by 3a=> perimeter . In here it is 3a because as it is an equilateral triangle the sides are same ,(a) and the sides are three . So it is 3a.

Then we would find the area by the 2nd formula provided in the formula list.

 \\  \\

 \huge  \ast\bold { \underline{ \underbrace{ \underline {\textsf{ \purple{Solution:-}}}}}} \ast

➟ 360 = 3a

➟ a = 360/3

➟ 120 = a

Using the 2nd formula :

Area = \begin{gathered}\rm \frac{\sqrt{3}}{4}(120)²\\ \sf \end{gathered}

 Area = \rm \frac{\sqrt{3}}{\cancel4} × \cancel{120}

 Area = \rm \sqrt{3}× 30 × 120

 Area = \rm 3600 \sqrt{3}cm.3600

Answered by ⲎⲟⲅȋⲊɑⲛ
221

\huge\orange{\overbrace{\red{\underbrace {\color {pink}{{\red\:{❥Question}}}}}}}

If the perimeter of an equilateral triangle is 360 cm. Then its area will be?

\huge\orange{\overbrace{\red{\underbrace {\color {pink}{{\red\:{❥Answer}}}}}}}

\red{✦Given:}

✎Perimeter of Equilateral triangle is 360 cm

\underline\red{✦Formula:-}

{✎Perimeter = 3a}

\blue{▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂}

 ➾\: 360 = 3 a

 ➾ \: a \:  =  \frac{360}{3}

 ➾ \: a \:  = 120 \: cm

✧Now, side of equilateral triangle is 120cm

\underline\red{✦Formula:-}

 ✎Area =  \frac{ \sqrt{3} }{4}  \times a {}^{2}

\blue{▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂}

 ➾\:  \frac{ \sqrt{3} }{4}  \times (120) {}^{2}

 ➾ \:  \sqrt{3}  \times 30 \times 120

 ➾ \: 3600 \sqrt{3} \:  cm  {}^{3}

\red{✦Hence,\:Area\: is\:3600√3 \: cm ²}

\huge\orange{❥Thank\:You.!}

Similar questions