Math, asked by dfdfdfdlfkldjfldfd, 9 months ago

If the point P (k -1,2) is equidistant from the point A (3,k ) and B(k,5), find the value of k

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
62

\huge\sf\pink{Answer}

☞ Value of k is 5 or 1

━━━━━━━━━━━━━

\huge\sf\blue{Given}

✭ P(1,2) is equidistant from A(3,k) & B(k,5)

━━━━━━━━━━━━━

\huge\sf\gray{To \:Find}

◈ The Value of k?

━━━━━━━━━━━━━

\huge\sf\purple{Steps}

\underline{\sf As \ Per \ the \ Question}

≫ PA = PB

Squaring both sides,

\sf(PA)^2 \: = (PB)^2

Let's use distance formula, that is,

\underline{\boxed{\sf{Distance \: formula \: = \: \sqrt{(x_2 \: - \: x_1 )^2 \: + \: (y_2 \: - \: y_1)^2}}}}

Distance of PA

\sf{PA = \sqrt{ (3 -(k -1))^2 + ( k-2)^2}}

Distance of PB

\sf PB\: = \: \sqrt{ (k-(k-1))^2 +(5-2)^2}

On Squaring both sides

\sf (PA)^2 \: = \: (PB)^2

\sf\sqrt{\bigg\lgroup(3 -(k-1))^2 +(k-2)^2\bigg\rgroup^2}

\sf\sqrt{\bigg\lgroup k-(k-1)^2 +(5-2)^2\bigg\rgroup^2}

\sf{(3-(k-1))^2 +(k-2)^2}

\sf (k-(k-1)^2 +(5-2)^2

\sf (3-k+1)^2 + (k-2)^2

\sf (k-k+1)^2 - (3)^2

\sf (4-k)^2 + (k-2)^2 = 10

\bigg\lgroup\sf (a-b)^2 = z^2 - 2ab + b^2\bigg\rgroup

\sf 16 + k^2 - 8k + k^2 + 4 - 4k = 10

\sf 2(k^2 - 6k + 5) \: = \: 0

\sf k^2 - 6k + 5 = 0

Using splitting middle term

\sf k^2 - 5k -k + 5 = 0

\sf k(k-5) - 1(k-5) = 0

\sf (k-5)(k-1) = 0

\sf\red{k = 5}

\sf\orange{k = 1}

━━━━━━━━━━━━━━━━━━

Answered by SwaggerGabru
8

\huge\underline{\overline{\mid{\bold{\red{ANSWER-}}\mid}}}

Given, P(0, 2) is equidistant from A(3, k) and B(k, 5).

∴ AP = PB

⇒ AP^2 = PB^2

⇒ (3 – 0)^2 + (k – 2)^2 = (k – 0)^2 + (5 – 2)^2 [ Using Distance formula]

⇒ 9 + k^2 – 4k + 4 = k^2 + 9

⇒ – 4k + 4 = 0

⇒ 4k = 4

⇒ k = 1

Thus, the value of k is 1.

Similar questions