Math, asked by ganijaSingh, 10 months ago

If the point P (k–1,2) is equidistant from the points A(3,k) and B(k,5), find the values of k.

Answers

Answered by Anonymous
340

  \sf\red{\underline{\underline{Solution.}}}

 \sf{We \: have,}

 \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf  \blue{ P \implies{(k - 1, 2)}}

 \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{ A \implies{(3, \: k)}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf  \blue{ B \implies(k, \: 5)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \red{ PA = PB}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm  ∵ P \: is \: equidistant \: from \:  \sf\red {a}\: and \:  \sf \red{ b}

 \implies \:   \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \sf \red{PA {}^{2}  = PB {}^{2} }

 \sf ∴ (3 - (k - 1 )  ) {}^{2}  + (k - 2) {}^{2}

 \:  \:  \:  \:  \:  \ \:  \:  \sf = (k - (k - 1)) {}^{2}  + (5 - 2) {}^{2}

 \implies   \:  \:  \:  \:  \:  \:  \sf (3 - k + 1) {}^{2}  + (k - 2) {}^{2}   \\

 \implies \:  \:  \bf = (k - k + 1) {}^{2}  + 3 {}^{2}

 \implies  \:  \:  \sf (4 - k) {}^{2}  + (k - 2) {}^{2}  = 1 + 9

\implies\sf16 + k {}^{2} - 8 k + k {}^{2}  + 4 - 4k =10

 \implies \ \:  \:  \:  \sf \:2k  {}^{2} - 12k + 10 = 0

 \bf \red{Dividing \: by \: 2,}

 \rm k {}^{2}  - 6k + 5 = 0

 \implies \: \:   \:  \sf k {}^{2}  - 5k - k + 5 = 0

 \implies  \:  \:  \sf k( k - 5) - 1(k - 5) = 0

 \implies \:  \:  \sf (k - 5)(k - 1) = 0

 \rm ∴ Either \: k - 5 = 0 \: or \: k - 1 = 0

 \sf i.e., \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: k = 5 \: or \: k = 1.

Answered by Anonymous
336

\Large\underline\textsf{\red{AnsWer:}}

\star \normalsize\sf \blue{The \: value \: of \: k \: is  \: 5 }

\star \normalsize\sf \blue {The \: value \: of \: k \: can \: also \: be \: 1}

\Large\underline\textsf{\red{Step \: by \: step \: explanation:}}

\normalsize\textbf{\underline{Points \: given :-}}

\star \normalsize\sf \purple{  \: \: P \: = \: (k -1,2)}

\star \normalsize\sf \purple{ \: \: A \: = \: (3, k)}

\star\normalsize\sf \purple{ \: \: B \: = \: (k,5)}

\normalsize\textbf{\underline{Also, \: it \: is \: given \: that :-}}

\normalsize\sf{ P \: is \: equidistant \: from \: points \: A \: and \: B, \: So;}

\star {\boxed{\sf \orange{ PA \: = \: PB}}}

\normalsize\textbf{\underline{Now, \: Two \: concepts \: we \: use :-}}

\normalsize\sf{ 1) \: We  \: use \: Distance \: formula \: to \: determine \: values.}

\normalsize\sf{2) We \: square \: both \: sides \: to \: cancel \: roots }

\normalsize\sf{ i.e. \: (PA)^2 \: = (PB)^2}

\normalsize\textbf{\underline{Let's \: solve:-}}

\star \normalsize\sf{Using \: \pink{Distance  \: formula;} }

{\boxed{\sf{Distance \: formula \: = \: \sqrt{(x_2 \: - \: x_1 )^2 \: + \: (y_2 \: - \: y_1)^2} }}}

\star \normalsize\sf \pink{ Distance \: of \: PA: \: }

\normalsize\sf{PA \: = \: \sqrt{ (3  -(k -1))^2 + ( k-2)^2} }

\star \normalsize\sf \pink{Distance \: of \: PB:}

\normalsize\sf{PB\: = \: \sqrt{ (k-(k-1))^2 +(5-2)^2} }

\star \normalsize\sf \pink{Squaring \: both  \: sides:}

\normalsize\sf{ (PA)^2 \: = \: (PB)^2 }

\normalsize\sf{\sqrt{ [ (3 -(k-1))^2 +(k-2)^2]^2} }

\normalsize\sf{ \: \: \: \: \:  \: \: \: \: \: \: = \: \sqrt{ [k-(k-1)^2 +(5-2)^2]^2} }

\footnotesize\sf{ \: \: \: \: \: \: \: \: \: (Cancel \: roots \: both \: sides)}

\normalsize\sf{(3-(k-1))^2 +(k-2)^2}

\normalsize\sf{\: \: \: \: \: \: \: \: \: \: \: \: \: \: = \: (k-(k-1)^2 +(5-2)^2}

\normalsize\sf{(3-k+1)^2 + (k-2)^2}

\normalsize\sf{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \: (k-k+1)^2 - (3)^2}

\normalsize\sf{(4-k)^2 + (k-2)^2 \: = \: 10 }

\footnotesize\sf{\: \: \: \: \:( using \: identity : (a-b)^2 \: = \: a^2 + b^2 - 2ab)}

\normalsize\sf{16 + k^2 - 8k + k^2 +  4 - 4k \: = \: 10}

\footnotesize\sf{ \: \: \: \: \: \:  \: \: \: \: (Take \:  2 \: common) }

\normalsize\sf{ 2(k^2 - 6k + 5) \: = \: 0 }

\normalsize\sf{k^2 - 6k + 5 = 0 }

\footnotesize\sf{\: \: \: \: \: \: (Using  \: middle \: term \: factorization)}

\normalsize\sf{k^2 - 5k -k + 5 = 0}

\normalsize\sf{k(k-5) - 1(k-5) = 0}

\normalsize\sf{(k-5)(k-1) = 0}

\normalsize\textsf{\underline{case \: 1}}

\normalsize\sf{ k - 5 = 0}

\normalsize\sf{ k = 0 + 5 = 5}

\normalsize\textsf{\underline{case \: 2}}

\normalsize\sf{k - 1 = 0}

\normalsize\sf{ k =  0 + 1 = 1}

{\boxed{\sf \orange{k = 1,5}}}

Similar questions