if the point P (x, y) is equidistant from point A (a+b, b-a)& B (a-b , a+b). Prove that bx = by
Answers
Answered by
2
hope this helps!
please mark as brainliest!
please mark as brainliest!
Attachments:
suhanisharma:
the answer is in the pic
Answered by
5
AP = BP
AP = √[ x - (a + b)]² + [y - (b - a)]²
= √(x - a - b)² + (y - b + a)² ..........(i)
BP = √[ x - (a - b)]² + [y - (a + b)]²
= √( x - a + b)² + (y - a + b)²........(ii)
Equating (i) and (ii),
√(x - a - b)² + (y - b + a)² = √(x - a + b)² + (y - a + b)²
(x - a - b)² + (y - b + a) = (x - a + b) + (y - a + b)
x² + a² + b² - 2xa - 2ab + 2bx + y² + b² + a² - 2ya + 2ab - 2by = x² + a² + b² - 2xa + 2ab - 2bx + y² + a² + b² - 2yb - 2ab + 2ay
x² + 2a + 2b² - 2xa + 2bx + y² - 2ya - 2by = x² + 2a² + 2b² - 2xa - 2bx + y² - 2yb + 2ay
4bx = 4ay
bx = ay
AP = √[ x - (a + b)]² + [y - (b - a)]²
= √(x - a - b)² + (y - b + a)² ..........(i)
BP = √[ x - (a - b)]² + [y - (a + b)]²
= √( x - a + b)² + (y - a + b)²........(ii)
Equating (i) and (ii),
√(x - a - b)² + (y - b + a)² = √(x - a + b)² + (y - a + b)²
(x - a - b)² + (y - b + a) = (x - a + b) + (y - a + b)
x² + a² + b² - 2xa - 2ab + 2bx + y² + b² + a² - 2ya + 2ab - 2by = x² + a² + b² - 2xa + 2ab - 2bx + y² + a² + b² - 2yb - 2ab + 2ay
x² + 2a + 2b² - 2xa + 2bx + y² - 2ya - 2by = x² + 2a² + 2b² - 2xa - 2bx + y² - 2yb + 2ay
4bx = 4ay
bx = ay
Similar questions