Math, asked by Spartes, 7 months ago

If the points (2,1) and( 1,- 2) are equidistant from point (x,y) ,show that x+3y = 0​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
30

\huge\sf\blue{Given}

✭ Points (2,1) and(1,-2) are equidistant from (x,y)

━━━━━━━━━━━━━

\huge\sf\gray{To \:Find}

◈ x+3y = 0

━━━━━━━━━━━━━

\huge\sf\purple{Steps}

According to the distance formula,

\underline{\boxed{\sf\sqrt{(x_{2} -x_{1})^2+{(y_{2}-y_{1})^2}}}}

Distance between (2,1) & (x,y)

\sf \sqrt{(x-2)^2 + (y-1)^2} \:\:\: -eq(1)

Distance between (1,-2) & (x,y)

\sf \sqrt{(x-1)^2+(y+2)^2} \:\:\: -eq(2)

Now that we are given the distance between these points are equal then on equating eq(1) & eq(2)

\sf \sqrt{(x-2)^2 + (y-1)^2} = \sqrt{(x-1)^2+(y+2)^2}

\sf (x-2)^2+ (y-1)^2 = (x-1)^2+(y+2)^2

\sf \bigg\lgroup (x+y)^2 = x^2+y^2+2xy\bigg\rgroup

Ans also,

\sf \bigg\lgroup (x-y)^2 = x^2-2xy+y^2\bigg\rgroup

\sf \bigg\{ x^2+(-2)^2+2(x)(-2)\bigg\} + \bigg\{ y^2+(-1)^2+2(y)(-1)\bigg\} = \bigg\{ x^2+(-1)^2+2(x)(-1)\bigg\} + \bigg\{y^2 + 2^2 + 2(y)(2)\bigg\}

\sf x^2+4-4x+y^2+1-2y = x^2+1-2x+y^2+4+4y

\sf \cancel{x^2}+\cancel{4}-4x+\cancel{y^2}+\cancel{1}-2y = \cancel{x^2} + \cancel{1} -2x + \cancel{y^2}+\cancel{4} +4y

\sf -4x-2y = -2x+4y

\sf -4x-2y+2x-4y = 0

\sf -4x+2x-2y-4y = 0

\sf -2x-6y=0

«« Multiple by \sf \dfrac{-1}{2} »»

\sf -\dfrac{1}{2} (-2x-6y) = 0

\sf \orange{x+3 = 0}

\sf Hence \ Proved!!

━━━━━━━━━━━━━━━━━━

Similar questions