Math, asked by parimisurendra14, 3 months ago

If the points whose position vectors are
3i-2j -k, 2i+3j-4k, - i +j+2k and
4i +5j +lamda k are coplanar, then show that
146/17

Answers

Answered by pulakmath007
18

SOLUTION

GIVEN

The points whose position vectors are

3 \hat{ \imath} - 2 \hat{ \jmath} -  \hat{k}

2 \hat{ \imath}  + 3\hat{ \jmath} - 4 \hat{k}

 -  \hat{ \imath}  +  \hat{ \jmath}  + 2 \hat{k}

4 \hat{ \imath}  + 5 \hat{ \jmath}  + \lambda \hat{k}

are coplanar

TO PROVE

 \displaystyle \:   \sf{ \: \lambda   = \frac{146}{17}  }

EVALUATION

Let A, B, C, D be the given points and O be the origin

Then

 \vec{OA} = 3 \hat{ \imath} - 2 \hat{ \jmath} -  \hat{k}

 \vec{OB} =2 \hat{ \imath}  + 3\hat{ \jmath} - 4 \hat{k}

 \vec{OC} = -  \hat{ \imath}  +  \hat{ \jmath}  + 2 \hat{k}

 \vec{OD} =4 \hat{ \imath}  + 5 \hat{ \jmath}  + \lambda \hat{k}

Now

 \vec{AB} =  -  \hat{ \imath}  + 5 \hat{ \jmath}  + 3  \hat{k}

 \vec{AC} =  - 4 \hat{ \imath}  + 3 \hat{ \jmath}  + 3\hat{k}

 \vec{AD} = 1 \hat{ \imath}  + 7 \hat{ \jmath}  + ( \lambda + 1)  \hat{k}

Since the given three points are coplanar

\displaystyle\begin{vmatrix}  -1  & 5 & 3\\  - 4 & 3 &  3 \\ 1 & 7 &  ( \lambda + 1) \end{vmatrix}  = 0

  \sf{ \implies \:  - (3 \lambda + 3 - 21) - 5( - 4 \lambda - 4 - 3 )- 3( - 28 - 3) = 0}

  \sf{ \implies \: 17 \lambda  - 146 = 0}

  \sf{ \implies \: 17 \lambda   = 146 }

 \displaystyle \:   \sf{ \implies \: \lambda   = \frac{146}{17}  }

 \displaystyle \:   \sf{ \boxed{ \therefore \:  \:  \:  \:  \lambda   = \frac{146}{17}  } \:   \: \:  \: }

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If two vectors are perpendicular to each other then which of these is zero

(a) scalar product or dot product (b) vector

https://brainly.in/question/31020619

2. If c is perpendicular to both a and b, then prove that it is also perpendicular to both a+b and a-b

https://brainly.in/question/22657880

Similar questions