if the points (x,y) be equidistant from the points A(a+b,b-a) and B(a-b,a+b), prove that bx-ay=0
harshitagarwal11:
. . .
Answers
Answered by
8
Solution:-
It is given that the points (x,y) be equidistant from the points A(a+b,b-a) and B(a-b,a+b).
PA=PB
Take square both side,
PA^2=PB^2
Now use distance
formula ,
{x-(a+b)}^2+{y-(b-a)}^2={x-(a-b)}^2+{y-(a+b)}^2
=>x^2+(a+b)^2-2x(a+b)+y^2+(b-a)^2-2y(b-a)y=x^2+(a-b)^2-2x(a-b)+y^2+(a+b)^2-2y(a+b)
=>2x(a-b)-2x(a+b)=2y(b-a)-2y(a+b)
=>2x{a-b-a-b}=2y{b-a-a-b}
=>2x(-2b)=2y(-2a)
=>bx=ay
Hence proved.
It is given that the points (x,y) be equidistant from the points A(a+b,b-a) and B(a-b,a+b).
PA=PB
Take square both side,
PA^2=PB^2
Now use distance
formula ,
{x-(a+b)}^2+{y-(b-a)}^2={x-(a-b)}^2+{y-(a+b)}^2
=>x^2+(a+b)^2-2x(a+b)+y^2+(b-a)^2-2y(b-a)y=x^2+(a-b)^2-2x(a-b)+y^2+(a+b)^2-2y(a+b)
=>2x(a-b)-2x(a+b)=2y(b-a)-2y(a+b)
=>2x{a-b-a-b}=2y{b-a-a-b}
=>2x(-2b)=2y(-2a)
=>bx=ay
Hence proved.
Attachments:
Similar questions