If the points (x,y) is equidistant from the points (a+b,b-a) and (a-b,a+b).Prove that bx=ay.
Answers
Answered by
1
Answer:
Let P(x,y), Q(a+b,b-a) and R(a-b,a+b) be the given points. Then,PQ=PR
⇒
{x−(a+b)}
2
+{y−(b−a)}
2
=
{x−(a−b)}
2
+{y−(a+b)}
2
⇒{x−(a+b)}
2
+{y−(b−a)}
2
={x−(a−b)}
2
+{y−(a+b)}
2
⇒x
2
−2x(a+b)+(a+b)
2
+y
2
−2y(b−a)+(b−a)
2
=x
2
+(a−b)
2
−2x(a−b)+y
2
−2y(a+b)+(a+b)
2
⇒−2x(a+b)−2y(b−a)=−2x(a−b)−2y(a+b)
⇒ax+bx+by−ay=ax−bx+ay+by
⇒2bx=2ay⇒bx=ay
REMARK-We know that a point which is equidistant from point P and Q lies on the
perpendicular bisector of PQ. Therefore, bx=ay is the equation of the perpendicular
bisector of PQ
Step-by-step explanation:
please mark brainliest
Similar questions
Math,
16 days ago
Political Science,
16 days ago
Math,
1 month ago
Sociology,
1 month ago
Math,
9 months ago