If the polynomial P(x)= ax^3+4x^2+3x-4 and g(x)= x^3-4x+a leaves the same remainder when divided by (x-3) , find the value of a
Answers
Step-by-step explanation:
A] given ax3+4x2 +3x−4=0 &
x 3 −4x+a=0 leave same
A] given ax
3
+4x
2
+3x−4=0 &
x
3
−4x+a=0 leave same
remainder when divided by x-3
P(x) = ax
3
+4x
2
+3x−4
q(x)= x
3
−4x+a
Remainder theorem,
P(3)=q(3)
a(3)
3
+4(3)
2
+3(3)−4=3
3
−4(3)+a
27a+36+9−4=27−12+a
26a=15−41
26a=−26
∴a=−1
P(x)=−x
3
+4x
2
+3x−4
when divide by (x-2)
P(2)=−(2)
3
+4(2)
2
+3(2)−4
=−8+16+6−4
=8+2
=10
Step-by-step explanation:
Step-by-step explanation:
A] given ax3+4x2 +3x−4=0 &
x 3 −4x+a=0 leave same
A] given ax
3
+4x
2
+3x−4=0 &
x
3
−4x+a=0 leave same
remainder when divided by x-3
P(x) = ax
3
+4x
2
+3x−4
q(x)= x
3
−4x+a
Remainder theorem,
P(3)=q(3)
a(3)
3
+4(3)
2
+3(3)−4=3
3
−4(3)+a
27a+36+9−4=27−12+a
26a=15−41
26a=−26
∴a=−1
P(x)=−x
3
+4x
2
+3x−4
when divide by (x-2)
P(2)=−(2)
3
+4(2)
2
+3(2)−4
=−8+16+6−4
=8+2
=10