if the polynomial x^3+2x^2+ax+b has factors (x+1) and (x-1), find the value of a and b
Answers
Answered by
24
(x-1) and (x+1) are factors of the given polynomial.
x-1 = 0. ; x+1 = 0
x = 1. ; x = -1
Put x= -1,1 to find a and b
First,put x = 1
x³+2x²+ax+b = 0
(1)³+2(1)²+a(1)+b = 0
1+2(1)+a+b = 0
1+2+a+b = 0
a+b+3 = 0
a+b = -3 -------(1)
Put x = -1,
(-1)³+2(-1)²+a(-1)+b = 0
-1+2(1)-a+b = 0
-1+2-a+b = 0
-a+b+1 = 0
-a+b = -1 ------(2)
(1)+(2)
a+b = -3
-a+b = -1
------------
2b = -4
b = -4/2
b = -2
Put b=-2 in (1)
a+(-2) = -3
a-2 = -3
a=-3+2
a = -1
Therefore, a = -1 and b = -2
x-1 = 0. ; x+1 = 0
x = 1. ; x = -1
Put x= -1,1 to find a and b
First,put x = 1
x³+2x²+ax+b = 0
(1)³+2(1)²+a(1)+b = 0
1+2(1)+a+b = 0
1+2+a+b = 0
a+b+3 = 0
a+b = -3 -------(1)
Put x = -1,
(-1)³+2(-1)²+a(-1)+b = 0
-1+2(1)-a+b = 0
-1+2-a+b = 0
-a+b+1 = 0
-a+b = -1 ------(2)
(1)+(2)
a+b = -3
-a+b = -1
------------
2b = -4
b = -4/2
b = -2
Put b=-2 in (1)
a+(-2) = -3
a-2 = -3
a=-3+2
a = -1
Therefore, a = -1 and b = -2
Similar questions