Math, asked by Anonymous, 1 year ago

If the polynomial x4 – 6x3 – 25x + 10 is divided by another polynomial x2 – 2x + k , the remainder comes out to be x + a , find k and a.


07161020: You are missing 16x term
Anonymous: but in the qn its like tht only :\
07161020: check out my answer

Answers

Answered by 07161020
42
Hey there,

             ________________
x²-2x+k)x⁴-6x³+16x²-25x+10 (x²-4x+(8-k)
              x⁴-2x³+kx₂
            -------------------------------
                  -4x³+(16-k)x²-25x
                  -4x³+8x²-4kx
            -------------------------------- 
                            (8-k)x²+(4k-25)x+10
                            (8-k)x²-2(8-k)x+k(8-k)
                --------------------------------------
                                         (2k-9)x+(10-8k+k²)

Since the remainder is of the form
(x+a)=(2k-9)x+(10-8k+k²)
By comparing coefficient of x, 
We get 2k-9=1
Therefore k=5
               
PLEASE MARK AS BRAINLIEST IF HELPFUL!!!

07161020: plz mark as brainliest
Anonymous: Great answer ^^
07161020: thanks it took me 15 minutes
07161020: to arrange the underdash and brackets and stuff
07161020: still its not perfect
Anonymous: ^_^ nice answer bro!!
07161020: thanks
Answered by atulbisoyi
15

Answer:


Step-by-step explanation:

there,


             ________________

x²-2x+k)x⁴-6x³+16x²-25x+10 (x²-4x+(8-k)

              x⁴-2x³+kx₂

            -------------------------------

                  -4x³+(16-k)x²-25x

                  -4x³+8x²-4kx

            -------------------------------- 

                            (8-k)x²+(4k-25)x+10

                            (8-k)x²-2(8-k)x+k(8-k)

                --------------------------------------

                                         (2k-9)x+(10-8k+k²)


Since the remainder is of the form

(x+a)=(2k-9)x+(10-8k+k²)

By comparing coefficient of x, 

We get 2k-9=1

Therefore k=5

               

PLEASE MARK AS BRAINLIEST IF HELPFUL!!

Similar questions