If the polynomial x4 – 6x3 – 25x + 10 is divided by another polynomial x2 – 2x + k , the remainder comes out to be x + a , find k and a.
07161020:
You are missing 16x term
Answers
Answered by
42
Hey there,
________________
x²-2x+k)x⁴-6x³+16x²-25x+10 (x²-4x+(8-k)
x⁴-2x³+kx₂
-------------------------------
-4x³+(16-k)x²-25x
-4x³+8x²-4kx
--------------------------------
(8-k)x²+(4k-25)x+10
(8-k)x²-2(8-k)x+k(8-k)
--------------------------------------
(2k-9)x+(10-8k+k²)
Since the remainder is of the form
(x+a)=(2k-9)x+(10-8k+k²)
By comparing coefficient of x,
We get 2k-9=1
Therefore k=5
PLEASE MARK AS BRAINLIEST IF HELPFUL!!!
________________
x²-2x+k)x⁴-6x³+16x²-25x+10 (x²-4x+(8-k)
x⁴-2x³+kx₂
-------------------------------
-4x³+(16-k)x²-25x
-4x³+8x²-4kx
--------------------------------
(8-k)x²+(4k-25)x+10
(8-k)x²-2(8-k)x+k(8-k)
--------------------------------------
(2k-9)x+(10-8k+k²)
Since the remainder is of the form
(x+a)=(2k-9)x+(10-8k+k²)
By comparing coefficient of x,
We get 2k-9=1
Therefore k=5
PLEASE MARK AS BRAINLIEST IF HELPFUL!!!
Answered by
15
Answer:
Step-by-step explanation:
there,
________________
x²-2x+k)x⁴-6x³+16x²-25x+10 (x²-4x+(8-k)
x⁴-2x³+kx₂
-------------------------------
-4x³+(16-k)x²-25x
-4x³+8x²-4kx
--------------------------------
(8-k)x²+(4k-25)x+10
(8-k)x²-2(8-k)x+k(8-k)
--------------------------------------
(2k-9)x+(10-8k+k²)
Since the remainder is of the form
(x+a)=(2k-9)x+(10-8k+k²)
By comparing coefficient of x,
We get 2k-9=1
Therefore k=5
PLEASE MARK AS BRAINLIEST IF HELPFUL!!
Similar questions