If the pth, qth, rth terms of an AP be x,y,z respectively , show that x (q-r)+y (r-p)+z (p-q)=0
Answers
Answer:
Step-by-step explanation:
Step-by-step explanation:
Let the first term be a and common difference of given AP be d.
Now, given that pth, qth, rth term of AP be x,y,z respectively, this means that
x = a + (p - 1)d .... (i)
y = a + (q - 1)d .... (ii)
z = a + (r - 1)d .... (iii)
From equation (i)
x(q - r) = a(q - r) + (q - r)(p - 1)d .... (iv)
From equation (ii)
y(r - p) = a(r - p) + (r - p)(q - 1)d .... (v)
From equation (iii)
z(p - q) = a(p - q) + (p - q))(r - 1)d .... (vi)
Adding equation (iv), (v) and (vi) we get
x(q - r) + y(r - p) + z(p - q) = a(q- r + r - p + p - q) + d((q - r)(p - 1) + (r - p)(q - 1) + (p - q))(r - 1))
x(q - r) + y(r - p) + z(p - q) = a(0) + d(qp - q - rp + r + rq - r - pq + q + pr - p - qr + q)
x(q - r) + y(r - p) + z(p - q) = a(0) + d(0)
x(q - r) + y(r - p) + z(p - q) = 0, this completes the proof.