Math, asked by shubhamohlyan1, 1 year ago

if the pth term of an AP is a and th term of an AP is p ,prove that nth term is (p+q-n)

Answers

Answered by shadowsabers03
1

Question:

If the pth term of an AP is q and qth term of the AP is p, prove that nth term is (p+q-n).

Proof:

Let the first term and common difference be a and d respectively.

T_p-T_q=q+p \\ \\ (p-q)d=q-p \\ \\ d=\frac{q-p}{p-q} \\ \\ d=\frac{-(p-q)}{p-q} \\ \\ d=-1 \\ \\

T_p=a+(p-1)d \\ \\ T_p=a-1(p-1) \\ \\ T_p=a-(p-1) \\ \\ T_p=a-p+1

T_q=a+(q-1)d \\ \\ T_q=a-1(q-1) \\ \\ T_q=a-(q-1) \\ \\ T_q=a-q+1

T_p+T_q=q+p \\ \\ a-p+1+a-q+1=q+p \\ \\2a-p-q+2=q+p \\ \\ 2a+2=2p+2q \\ \\ 2(a+1)=2(p+q) \\ \\ a+1=p+q

T_n=a+(n-1)d \\ \\ T_n=a-1(n-1) \\ \\ T_n=a-n+1 \\ \\ T_n=a+1-n \\ \\ T_n=p+q-n

Hence proved!!!

     

__________________________________________________

                     

Hope this may be helpful.

       

Please mark my answer as the brainliest if this may be helpful.

If you've any doubts, please ask me in the 'comments' section.

             

Thank you. Have a nice day. :-))

       

#adithyasajeevan

         

Answered by Anonymous
1

{\green {\boxed {\mathtt {✓verified\:answer}}}}

let \: a \: be \: the \: first \: term \: and \: d \: be \: the \: common \: difference \: of \: the \: nth \: term \: of \: ap \\ t _{p} = a + (p - 1)d \:  \: and \: t _{q}  = a + (q - 1)d \\ now \: t _{p } = q \: and \: t _{q} = p \\  \therefore \: a + (p - 1)d = q \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ... .(1) \\ and \: a + (q - 1)d = p \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: .. ..  (2) \\  \\  \\  on \: subtracting \: (1)from(2) \: we \: get \\ (q - p)d = (p - q) \implies \: d =  - 1 \\ putting \: d =  - 1 \: in \: (1) \: we \: get \: a = (p + q  - 1) \\  \therefore \: nth \: term \:  = a(n - 1)d = (p + q - 1) + (n - 1)( - 1) = (p + q - n) \\  \\ hence \: nth \: term \:  = (p + q - n)

{\huge{\underline{\underline{\underline{\orange{\mathtt{❢◥ ▬▬▬▬▬▬ .....◆ .....▬▬▬▬▬▬ ◤❢}}}}}}}

Similar questions