Math, asked by atrinadh0279, 9 months ago

If the pth term of an ap is q ans qth term is p then prove that an=p+q-n


Answers

Answered by AdityeshRaghav
1

Given :-

  • Ap = q
  • Aq = p

To Prove :- An = (p+q-n)

Concepts :-

  • Let The First Term Be a
  • Let The Common Differnce be d

A. T. Q.

Ap = a+(p-1)d

=> q = a+(p-1)d.................................. (i)

Also,

Aq = a+(q-1)d

=> p = a+(q-1)d................................. (ii)

Subtracting Eqn (ii) From eqn (i) we Get,

p-q= (q-p)d

=> d= -1

Substituting d = -1 in eqn (i)

=> a+(p-1)(-1) = q

=> a = p+q-1

Now, An = a+(n-1)d And a = (p+q-1), d= -1

=> An = (p+q-1) + (n-1)(-1)

Therfore, An = p+q-1-n+1

=> p+q-n

So, An = (p+q-n)

Hope It Helps You..... :)

Answered by Anonymous
1

{\green {\boxed {\mathtt {✓verified\:answer}}}}

let \: a \: be \: the \: first \: term \: and \: d \: be \: the \: common \: difference \: of \: the \: nth \: term \: of \: ap \\ t _{p} = a + (p - 1)d \:  \: and \: t _{q}  = a + (q - 1)d \\ now \: t _{p } = q \: and \: t _{q} = p \\  \therefore \: a + (p - 1)d = q \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ... .(1) \\ and \: a + (q - 1)d = p \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: .. ..  (2) \\  \\  \\  on \: subtracting \: (1)from(2) \: we \: get \\ (q - p)d = (p - q) \implies \: d =  - 1 \\ putting \: d =  - 1 \: in \: (1) \: we \: get \: a = (p + q  - 1) \\  \therefore \: nth \: term \:  = a(n - 1)d = (p + q - 1) + (n - 1)( - 1) = (p + q - n) \\  \\ hence \: nth \: term \:  = (p + q - n)

{\huge{\underline{\underline{\underline{\orange{\mathtt{❢◥ ▬▬▬▬▬▬.... ◆ ....▬▬▬▬▬▬ ◤❢}}}}}}}

Similar questions