If the quadratic equation (a2
– b2
)x2
+ (b2
– c2
)x + (c2
– a2
) = 0 has equal roots, then which of the following is
true?
(A) b2
+ c2
= a2
(B) b2 + c2
= 2a2
(C) b2
– c2
= 2a2
(D) a2
= b2 + 2c2
Answers
The given quadratic equation is
( a² - b² ) x² + ( b² - c² ) x + ( c² - a² ) = 0
For equal roots, we must have
D = 0, where D is the discriminant
⇒ ( b² - c² )² - 4 ( a² - b² ) ( c² - a² ) = 0
⇒ b⁴ - 2b²c² + c⁴ - 4a²c² + 4a⁴ + 4b²c² - 4a²b² = 0
⇒ 4a⁴ + b⁴ + c⁴ - 4a²b² + 2b²c² - 4c²a² = 0
⇒ ( 2a² - b² - c² )² = 0
∴ 2a² - b² - c² = 0
⇒ b² + c² = 2a²
Thus, option ( C ) is correct.
#MarkAsBrainliest
Solution :
We have given a quadratic polynomial ( a² - b² ) x² + ( b² - c² ) x + ( c² - a² ) = 0
According to the information given to us
The above quadratic polynomial has equal roots
In Condition of equal roots we know that D = 0
Where Discriminant =
In order to know which condition is true for the quadratic polynomial ( a² - b² ) x² + ( b² - c² ) x + ( c² - a² ) = 0 we need to substitute the values in the discriminant
As be already know with D = 0
∴
Where ,
a = ( a² - b² )
b = ( b² - c² )
c = ( c² - a² )
⇒ ( b² - c² )² - 4 ( a² - b² ) ( c² - a² ) = 0
⇒
( ∴ )
⇒ b⁴ - 2b²c² + c⁴ - 4a²c² + 4a⁴ + 4b²c² - 4a²b² = 0
⇒ 4a⁴ + b⁴ + c⁴ - 4a²b² + 2b²c² - 4c²a² = 0
⇒ ( 2a² - b² - c² )² = 0
⇒ ∴ 2a² - b² - c² = 0
⇒
⇒
Our obtained result matched with option (c) . Implies , is true for a quadratic polynomial ( a² - b² ) x² + ( b² - c² ) x + ( c² - a² ) = 0 has equal roots