Math, asked by ahaangandhi8335, 4 months ago

If the radii of two cylinders are same and the height of one cylinder is double the height of the other cylinder, then the ratio of their volume is a) 1:2 b) 2:1 c) 1:4 d) 4:1

Answers

Answered by EliteZeal
15

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  • Radii of two cylinders are same
  • Height of one cylinder is double the height of the other cylinder

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  • The ratio of their volume

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  • Let the first cylinder be "V1"
  • Let the second cylinder be "V2"

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

We know that ,

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\underline{\purple{ \underline{\orange{\bold{\texttt{Volume of cylinder :}}}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

➠ πr²h ⚊⚊⚊⚊ ⓵

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Where,

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  • r = Radius of cylinder
  • h = Height of cylinder

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\underline{\purple{ \underline{\orange{\bold{\texttt{Volume of cylinder V1 :}}}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Let the radius of first cylinder be "R" & the height of the first cylinder be "H"

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Thus ,

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  • r = R
  • h = H

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Putting the above values in ⓵

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ πr²h

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ πR²H ⚊⚊⚊⚊ ⓶

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\underline{\purple{ \underline{\orange{\bold{\texttt{Volume of cylinder V2 :}}}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

According to the question in the second cylinder the radius remains same i.e "R" but the height gets doubled i.e "2H"

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Thus ,

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  • r = R
  • h = 2H

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Putting the above values in ⓵

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ πr²h

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ πR²(2H) ⚊⚊⚊⚊ ⓷

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\underline{\purple{ \underline{\orange{\bold{\texttt{Ratio of volume of first cylinder to the second :}}}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

From equation ⓶ & ⓷

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜  \sf \dfrac {\pi R ^2 H } { \pi R ^2 2H }

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: : ➨  \sf \dfrac {1} {2}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  • Hence the ratio of volume of first cylinder to the second cylinder is 1:2

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Additional information

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Total surface area of cylinder

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  • 2πr (h + r)

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Lateral surface area of cylinder

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  • 2πrh

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Answered by Ranveerx107
0

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  • Radii of two cylinders are same
  • Height of one cylinder is double the height of the other cylinder

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  • The ratio of their volume

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Let the first cylinder be "V1"

Let the second cylinder be "V2"

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

We know that ,

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\underline{\purple{ \underline{\orange{\bold{\texttt{Volume of cylinder :}}}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

➠ πr²h ⚊⚊⚊⚊ ⓵

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Where,

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  • r = Radius of cylinder
  • h = Height of cylinder

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\underline{\purple{ \underline{\orange{\bold{\texttt{Volume of cylinder V1 :}}}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Let the radius of first cylinder be "R" & the height of the first cylinder be "H"

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Thus ,

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

r = R

h = H

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

⟮ Putting the above values in ⓵ ⟯

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ πr²h

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ πR²H ⚊⚊⚊⚊ ⓶

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\underline{\purple{ \underline{\orange{\bold{\texttt{Volume of cylinder V2 :}}}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

According to the question in the second cylinder the radius remains same i.e "R" but the height gets doubled i.e "2H"

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Thus ,

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

r = R

h = 2H

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

⟮ Putting the above values in ⓵ ⟯

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ πr²h

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜ πR²(2H) ⚊⚊⚊⚊ ⓷

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\underline{\purple{ \underline{\orange{\bold{\texttt{Ratio of volume of first cylinder to the second :}}}}}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

From equation ⓶ & ⓷

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: ➜  \sf \dfrac {\pi R ^2 H } { \pi R ^2 2H }

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

: : ➨  \sf \dfrac {1} {2}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Hence the ratio of volume of first cylinder to the second cylinder is 1:2

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Similar questions