Math, asked by sachihareshkhushalan, 10 months ago

If the radius of a cylinder is 4cm and height is 10cm, then total surface area of cylinder is

Answers

Answered by StarrySoul
44

Given :

• Radius (r) = 4 cm

• Height (h) = 10 cm

To Find :

• Total Surface Area (TSA) of cylinder

Solution :

We know that :

Total Surface Area of cylinder = Area of curved surface + 2 × Area of base

→ T.S.A = 2πrh + 2 × πr²

→ T.S.A = 2πrh + 2πr²

T. S. A = 2πr(r + h)

Put the value of radius & height of the cylinder.

 \longrightarrow \sf \: 2 \times  \dfrac{22}{7}  \times 4(4+ 10)

 \longrightarrow \sf \: 2 \times  \dfrac{22}{ \cancel7}  \times 4 \times  \cancel{14}

 \longrightarrow \sf \: 2 \times 22 \times 4 \times 2

 \longrightarrow \sf \: 44 \times 8

 \longrightarrow \sf \: 352  \: {cm}^{2}

\therefore Total Surface Area of the cylinder is 352 cm².

Answered by Anonymous
50

Given :

\begin{lgathered}\bullet\:\:\textsf{Radius of the cylinder = \textbf{4 cm}}\\\bullet\:\:\textsf{Height of the cylinder = \textbf{10 cm}}\end{lgathered}

\rule{130}1

Solution :

\underline{\boldsymbol{According\: to \:the\: Question\:now :}}

\begin{lgathered}:\implies\sf TSA\:of\: cylinder = 2 \pi r\: \big\{ r + h \big\}\\\\\\:\implies\sf 2 \times \dfrac{22}{7} \times 4\: \big\{ 4 + 10 \big\} \\\\\\:\implies\sf 2 \times \dfrac{22}{\cancel{7}} \times 4 \times \cancel{14}\\\\\\:\implies\sf 22 \times 16\\\\\\:\implies\sf 352\:cm^2\end{lgathered}

\therefore\:\underline{\textsf{The total surface area of cylinder is \textbf{352}}\:\sf{cm^2}}.

\rule{180}2

Similar questions