Math, asked by sreejaeknm, 4 months ago

. If the radius
of
a Sector is 21cm and
its central angle is 120 then find the
length of the arc

Answers

Answered by sajinkya674
3

Answer:

Therefore, the length of the arc of the circle is 44 cm

Step-by-step explanation:

Answered by Anonymous
82

Explanation,

ㅤㅤㅤㅤㅤ

Given,

  • Radius (r) of a sector is 21 cm.
  • Central angel (Θ) = 120°

ㅤㅤㅤㅤㅤ

To Find,

  • The length of an arc.

ㅤㅤㅤㅤㅤ

Solution,

ㅤㅤㅤㅤㅤ

We know that,

ㅤㅤㅤㅤㅤ

Length of an arc = Θ/360° × 2πr

ㅤㅤㅤㅤㅤ

[ Put the values ]

ㅤㅤㅤㅤㅤ

 \large\rightarrow \sf  Length \:  of  \: an \:  arc  \:  =  \dfrac{120 \degree}{360 \degree}  \times 2 \times  \dfrac{22}{7}  \times 21

ㅤㅤㅤㅤㅤ

 \large\rightarrow \sf \: Length \:  of  \: an \:  arc  \:  =  \dfrac{12 \cancel0 \degree}{36 \cancel0 \degree}  \times 2 \times  \dfrac{22}{ \cancel7}  \times \cancel{ 21}

ㅤㅤㅤㅤㅤ

\large\rightarrow \sf  Length \:  of  \: an \:  arc  \:  =  \dfrac{1}{3}  \times 2 \times 22 \times 3

ㅤㅤㅤㅤㅤ

\large\rightarrow \sf  Length \:  of  \: an \:  arc  \:  =  \dfrac{2 \times 22 \times \cancel3}{ \cancel3}

ㅤㅤㅤㅤㅤ

\large\rightarrow \sf  Length \:  of  \: an \:  arc  \:  = 2 \times 22

ㅤㅤㅤㅤㅤ

\large\rightarrow{ \underline { \boxed{\sf  Length \:  of  \: an \:  arc  \:  = 44cm}}} \bigstar

ㅤㅤㅤㅤㅤ

Therefore,

ㅤㅤㅤㅤㅤ

The length of an arc is 44 cm.

Similar questions