Math, asked by shreyeeekbote0, 3 months ago

If the radius of a sphere is increased by
20 %, by what per cent does its volume
increase?​

Answers

Answered by mathdude500
3

\large\underline{\bold{Solution-}}

Let radius of sphere be 'r' units.

So,

Volume of sphere is given by

 \tt \: Volume_{(sphere)} \:  = V_{1} =  \: \dfrac{4}{3}  \: \pi \:  {r}^{3}  -  -  - (1)

Now,

it is given that Radius is increased by 20 %.

So,

 \tt \: New  \: radius, R \:  =  \: r \:  + \dfrac{20}{100} r

 \tt \: New  \: radius, R \:  =  \: r \:  +  \: \dfrac{1}{5} r

 \tt \: New  \: radius, R \:  =  \: \dfrac{5r + r}{5}

 \tt \: New \:  radius, R \:  =  \: \dfrac{6r}{5}

Now,

New volume of sphere is given by

 \tt \: Volume_{(sphere)} = V_{2} = \dfrac{4}{3} \pi \:  {\bigg(\dfrac{6r}{5}  \bigg) }^{3}

 \tt \: Volume_{(sphere)} = V_{2} =\dfrac{4}{3}  \times  \dfrac{216}{125} \pi \:  {r}^{3}  -  - (2)

Now,

%age increase in Volume of sphere is given by

  \tt \: \%age \: increase \:  =  \: \dfrac{V_{2} - V_{1}}{V_{1}}  \times 100\%

  \tt \: \%age \: increase \:  =  \: \dfrac{\dfrac{4}{3} \times  \dfrac{216}{125}\pi \:  {r}^{3}  - \dfrac{4}{3}\pi \:  {r}^{3} }{\dfrac{4}{3}\pi \:  {r}^{3}  }  \times 100\%

  \tt \: \%age \: increase \:  =  \: \dfrac{\cancel{\dfrac{4}{3}\pi \:  {r}^{3}} \times \bigg( \dfrac{216}{125} - 1 \bigg)   }{\cancel{\dfrac{4}{3}\pi \:  {r}^{3}}}  \times 100\%

  \tt \: \%age \: increase \:  =  \: \dfrac{216 - 125}{125}  \times 100\%

  \tt \: \%age \: increase \:  =  \: \dfrac{91}{5}  \times 4 \: \%

  \tt \: \%age \: increase \:  =  \: 72.8 \: \%

Additional Information :-

1. \:  \:  \:  \boxed{ \tt{Surface Area_{(sphere)} \:  =  \: 4 \: \pi \:  {r}^{2} }}

 2. \:  \:  \: \boxed{ \tt{Surface Area_{(hemi \:  -  \: sphere)} = 2 \: \pi \:  {r}^{2} }}

3. \:  \:  \:  \boxed{ \tt{Total \: Surface Area_{(sphere)} = 3\pi \:  {r}^{2} }}

4. \:  \:  \:  \boxed{ \tt{Volume_{(hemi - sphere)} = \dfrac{2}{3}\pi \:  {r}^{3}}}

Similar questions