Math, asked by salonipadwal1607, 1 month ago

If the radius of the cone is 6 cm and perpendicular height is 8 cm then find the curved surface area of cone.(take pi=3.14) *​

Answers

Answered by SavageBlast
6

Given:-

  • The radius of the cone is 6 cm and perpendicular height is 8 cm.

To Find:-

  • Curved surface area of Cone.

Formula Used:-

  • {\boxed{\bf{CSA\:of\:Cone=\pi rl}}}

  • {\boxed{\bf{l=\sqrt{r^2+h^2}}}}

Here,

  • r = Radius

  • l = Slant Height

  • h = Perpendicular Height

Solution:-

Firstly,

\bf :\implies\:l=\sqrt{r^2+h^2}

\sf :\implies\:l=\sqrt{6^2+8^2}

\sf :\implies\:l=\sqrt{36+64}

\sf :\implies\:l=\sqrt{100}

\bf :\implies\:l=10\:cm

Now,

\bf :\implies\:CSA\:of\: Cone=\pi rl

\sf :\implies\:CSA\:of\: Cone=3.14\times6\times10

\bf :\implies\:CSA\:of\: Cone=188.4\:cm^2

Hence, The Curved Surface Area of the Cone is 18.4cm².

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by vaishu775
3

Given :-

The radius of the cone is 6 cm and perpendicular height is 8 cm.

  • π = 3.14

To Find :-

  • What is the curved surface area of the cone.

Formula Used :-

♣ Slant Height Formula :

\begin{gathered}\longmapsto \sf\boxed{\bold{\pink{l =\: \sqrt{h^2 + r^2}}}}\\\end{gathered}

where,

  • l = Slant Height
  • h = Height
  • r = Radius

♣ Curved Surface Area of Cone

Formula :

\begin{gathered}\longmapsto \sf\boxed{\bold{\pink{C.S.A\: Of\: Cone =\: {\pi}rl}}}\\\end{gathered}

where,

  • C.S.A = Curved Surface Area
  • r = Radius
  • l = Slant Height

Solution :-

  • First, we have to find the slant height of the cone :

Given :

  • Radius = 6 cm
  • Height = 8 cm

According to the question by using the formula we get,

\implies \sf l =\: \sqrt{(8)^2 + (6)^2}

\implies \sf l =\: \sqrt{8 \times 8 + 6 \times 6}

\implies \sf l =\: \sqrt{64 + 36}

\implies \sf l =\: \sqrt{100}

\implies \sf\bold{\purple{l =\: 10\: cm}}

Now

  • we have to find the curved surface area of the cone :

Given :

  • π = 3.14
  • Radius (r) = 6 cm
  • Slant Height (l) = 10 cm

According to the question by using the formula we get,

\begin{gathered}\longrightarrow \sf C.S.A\: Of\: Cone =\: 3.14 \times 6 \times 10\\\end{gathered}

\begin{gathered}\longrightarrow \sf C.S.A\: Of\: Cone =\: \dfrac{314}{100} \times 60\\\end{gathered}

 \begin{gathered}\longrightarrow \sf C.S.A\: Of\: Cone =\: \dfrac{1884\cancel{0}}{10\cancel{0}}\\\end{gathered}

\longrightarrow \sf\bold{\red{C.S.A\: Of\: Cone =\: 188.4\: cm^2}}

∴ The curved surface area or CSA of cone is 188.4 cm².

Similar questions