Math, asked by kaarthikdeepak, 3 months ago

If the ratio of areas of two squares is 81: 121, then the ratio of their perimeters is?

Answers

Answered by nabihahsamil246
0

Answer:

Answer:

9:11

Hope is it help full

Step-by-step explanation:

Answered by ChitranjanMahajan
0

The ratio of perimeters of the given two squares with the ratio in the area as 81 : 121 is 9 : 11.  

Given :

The ratio of areas of 2 squares = 81 : 121

To Find :

Ratio of perimeters of the 2 squares

Solution :

Let the length of a side of the first square S1 be "a" and the length of a side of the second square i.e. S2 be "b".

Area of square S1 with side "a"   = a * a

                                                      = a^{2}

Area of square S2 with side "b"  = b * b

                                                      = b^{2}

Then the ratio of the areas of the 2 squares as compared with the given ratio is :

                    81 : 121 = Area S1 : Area S2

                    81 : 121 = a^{2} : b^{2}

                     81/121 = a^{2}/b^{2}

                     9^{2}/11^{2}  = a^{2} /b^{2}

                     (9/11)^{2} = (a/b)^{2}

                       9/11 = a/b

            Thus, a : b = 9 : 11

The perimeter of square S1 with side "a"   = 4 * a

                                                                     = 4a

The perimeter of square S2 with side "b"  = 4 * b

                                                                      = 4b

Thus, the ratio of perimeters of the given two squares is :

                  P1 : P2 = 4a : 4b

                               = 4a / 4b

                                = a/b

                                = a : b

                                = 9 : 11

Hence, the ratio of perimeters of the given two squares according to the question is 9 : 11.                                

To learn more about Ratio, visit

https://brainly.com/question/12024093

#SPJ3

Similar questions