Math, asked by Mister360, 2 months ago

If the ratio of length, breadth and height of cuboid is 1:2:3. And the volume is 2058 cu. cm. Find :-
Length and breadth and height
TSA
LSA

Answers

Answered by kailashmannem
167

 \huge{\bf{\green{\mathfrak{Question:-}}}}

  • If the ratio of length, breadth and height of cuboid is 1:2:3. And the volume is 2058 cm³.
  • Find :-
  • Length, breadth and height of the cuboid
  • TSA
  • LSA

 \huge {\bf{\orange{\mathfrak{Answer:-}}}}

  •  \textsf{Ratio of length, breadth and height is 1:2:3.}

  •  \sf{Volume\: of\: the \:cuboid =\: 2058 \:cm^{3}.}

  •  \textsf{Let the length, breadth and height of the cuboid be x.}

  •  \therefore{\sf{Length \: = \: x}}

  •  \therefore{\sf{Breadth \: = \: 2 \: * \: x \: = \: 2x}}

  •  \therefore{\sf{Height \: = \: 3 \: * \: x \: = \: 3x}}

  •  \boxed{\sf{Volume \: of \: the \: cuboid \: = \: lbh \: units^{3}.}}

  •  \boxed{\sf{x \: *\: 2x\: *\: 3x \: = \: 2058}}

  •  \sf{6x^{3} \: = \: 2058}

  •  \sf{x^{3} \: = \: \dfrac{2058}{6}}

  •  \sf{x^{3} \: = \: 343}

  •  \sf{x \: = \: \sqrt[3]{343}}

  •  \boxed{\sf{x \: = \: 7.}}

  •  \boxed{\textsf{Length of the cuboid = x = 7 cm.}}

  •  \boxed{\textsf{Breadth of the cuboid = 2x = 2 * 7 = 14 cm.}}

  •  \boxed{\textsf{Height of the cuboid = 3x = 3 * 7 = 21 cm.}}

  •  \boxed{\sf{TSA \:of\: the\: cuboid \:=\: 2(lb \:+ \:bh \:+ \:hl) \:units^{2}.}}

  •  \sf{2(7 \: * \: 14 \: + \: 14 \: * \: 21 \: + \: 21 \: * \: 7)}

  •  \sf{2(98 \: + \: 294 \: + \: 147)}

  •  \sf{2(539)}

  •  \boxed{\sf{1078 \: cm^{2}.}}

  •  \boxed{\sf{LSA\: of \:the \:cuboid \:=\: 2h(l \: + \: b) \: units^{2}.}}

  •  \sf{2 \: * \: 21(7 \: + \: 14)}

  •  \sf{42(21)}

  •  \boxed{\sf{882 \: cm^{2}.}}

 \huge{\bf{\red{\mathfrak{Conclusion:-}}}}

  •  \boxed{\textsf{Length of the cuboid = 7 cm.}}
  •  \boxed{\textsf{Breadth of the cuboid = 2 * 7 = 14 cm.}}

  •  \boxed{\textsf{Height of the cuboid = 3 * 7 = 21 cm.}}

  •  \boxed{\sf{TSA \: of \: the \: cuboid \: = \: 1078 \: cm^{2}.}}

  •  \boxed{\sf{LSA \: of \: the \: cuboid \: = \: 882 \: cm^{2}.}}

 \huge{\bf{\purple{\mathfrak{Formulas \: used:-}}}}

  •  \sf{TSA \:of\: the\: cuboid \:=\: 2(lb \:+ \:bh \:+ \:hl) \:units^{2}.}

  •  \sf{LSA\: of \:the \:cuboid \:=\: 2h(l \: + \: b) \: units^{2}.}

  •  \sf{Volume \: of \: the \: cuboid \: = \: lbh \: units^{3}.}

Answered by Anonymous
106

Answer:

Given :-

  • The ratio of length, breadth and height of cuboid is 1 : 2 : 3 and the volume is 2058 cm³.

To Find :-

  • What is the length, breadth, height, TSA (Total surface area) and LSA (Lateral surface area).

Formula Used :-

\sf\boxed{\bold{\pink{Volume\: of\: cuboid =\: Length \times Breadth \times Height}}}

\sf\boxed{\bold{\pink{T.S.A\: of\: Cuboid =\: 2(LB + BH + HL)}}}

where,

  • L = Length
  • B = Breadth
  • H = Height

\sf\boxed{\bold{\pink{L.S.A\: of\: Cuboid =\: 2H(L + B)}}}

Solution :-

Let, the length be x cm.

Breadth be 2x.

And, the height will be 3x.

According to the question by using the formula we get,

\sf x \times 2x \times 3x =\: 2058

\sf 6{x}^{3} =\: 2058

\sf {x}^{3} =\: \dfrac{\cancel{2058}}{\cancel{6}}

\sf {x}^{3} =\: 343

\sf x =\: \sqrt[3]{343}

\sf\bold{x =\: 7\: cm}

Hence, the required length, breadth and height of cuboid are :

Length of cuboid :

\sf x\: cm

\sf\bold{\green{7\: cm}}

Breadth of cuboid :

\sf 2x\: cm

\sf 2 \times 7\: cm

\sf\bold{\green{14\: cm}}

And,

Height of cuboid :

\sf 3x\: cm

\sf 3 \times 7\: cm

\sf\bold{\green{21\: cm}}

\therefore The length, breadth and height of cuboid is 7 cm, 14 cm and 21 cm respectively.

Now, we have to find the TSA or cuboid :

Given :

  • Length = 7 cm
  • Breadth = 14 cm
  • Height = 21 cm

According to the question by using the formula we get,

 \implies \sf T.S.A\: of\: Cuboid =\: 2(7 \times 14 + 14 \times 21 + 21 \times 7)\\

 \implies \sf T.S.A\: of\: Cuboid =\: 2(98 + 294 + 147)\\

 \implies \sf T.S.A\: of\: Cuboid =\: 2(539)\\

 \implies \sf T.S.A\: of\: Cuboid =\: 2 \times 538\\

 \implies \sf\bold{\green{T.S.A\: of\: Cuboid =\: 1078\: {cm}^{2}}}\\

\therefore The total surface area or TSA of cuboid is 1078 cm².

Again, we have to find the LSA or lateral surface area of cuboid :

Given :

  • Length = 7 cm
  • Breadth = 14 cm
  • Height = 21 cm

According to the question by using the formula we get,

 \implies \sf L.S.A\: of\: Cuboid =\: 2 \times 21(7 + 14)\\

 \implies \sf L.S.A\: of\: Cuboid =\: 42(21)\\

 \implies \sf L.S.A\: of\: Cuboid =\: 42 \times 21\\

 \implies \sf\bold{\green{L.S.A\: of\: Cuboid =\: 882\: {cm}^{2}}}\\

\therefore The LSA or lateral surface area of cuboid is 882 cm².

Similar questions