Math, asked by nitusaroj1131, 11 months ago

if the ratio of radii of two spheres is 3 ratio 4 then what is the ratio of their volumes

Answers

Answered by BK07
6

Answer:

ratios of area of Sphere equal to 3 is to 4.

volume of Sphere equal to

4 \div 3 \times \pi \times  {r}^{3}

ratio of volumes of Sphere

 \frac{4 \div 3 \times \pi \times  {3}^{3} }{4 \div 3 \times \pi \times  {4}^{3} }

 \frac{27}{64}

27:64

Answered by Brâiñlynêha
3

\huge\mathtt{\underline{ANSWER:-}}

\sf\implies 27:64

\huge\mathbb{\underline{\purple{SOLUTION:-}}}

\bold{Given}\begin{cases}\sf{Radii\:of\: spheres}\\ \sf{In\: ratio 4:3}\end{cases}

\mathbb{TO\: FIND:-}

Ratio of their volumes

  • Now let the radii be r

The radii be 3r and 4r

\sf\implies r_1=3r\\ \\ \sf\implies r_2=4r

  • Now 1st find the volume of 1st sphere

\mathfrak{\underline{ Volume\:of\:sphere=\frac{4}{3}\pi r{}^{3}}}

\sf Volume\:of\:sphere_1=\frac{4}{3}\pi r{}^{3}\\ \\ \sf\leadsto Volume\:of\:sphere_1=\frac{4}{3}\pi\times 27r{}^{3}\\ \\ \sf\implies or\: 27\frac{4}{3}\pi r{}^{3}

\sf\underline{\purple{Volume\:of\:sphere_1=27\frac{4}{3}\pi r{}^{3}}}

\sf Volume \:of\:sphere_2=\frac{4}{3}\pi r{}^{3}

\bold{Radius}\begin{cases}\sf{4r}\end{cases}

\sf Volume\:of\:sphere_2=\frac{4}{3}\pi\times 4r\times 4r\times 4r\\ \\ \sf\leadsto Volume\:of\:sphere_2=\frac{4}{3}\pi 64r{}^{3}\\ \\ \sf\implies or 64\frac{4}{3}\pi r{}^{3}

\sf\underline{\purple{Volume\:of\:sphere_2=64\frac{4}{3}\pi r{}^{3}}}

\sf\implies  Ratio=\frac{Volume\:of\:sphere_1}{Volume\:of\:sphere_2}\\ \\ \sf\implies Ratio=\frac{27\cancel{\frac{4}{3}\pi r{}^{3}}}{64\cancel{\frac{4}{3}\pi r{}^{3}}}\\ \\ \sf\implies \frac{27}{64}\\ \\ \sf\Longrightarrow 27:64

\boxed{\sf{Ratio\:of\: their\: volumes=27:64}}

#BAL

#answerwithquality

Similar questions