Math, asked by nikhil4761, 1 year ago

if the ratio of roots of the quadratic equation x2+px+q=0 be equal to the ratio of x2+lx+m=0. Prove that p2m=l2q​

Answers

Answered by Anonymous
188

SOLUTION ☺️

 =  > let \:  \alpha  \: and \:  \beta  \: be \: the \: roots \: of \: equation \\  =  > x {}^{2}  + px + q = 0 \\  =  > and \: a \: and \: b \: are \: the \: roots \: of \: equation \\ =  > x {}^{2}  + lx + m = 0 \\  =  > then \:  \alpha  +  \beta  =  - p \: and \:  \alpha  \beta  = q.....(1) \\  =  > a + b =  - l \: and \: ab = m.....(2) \\   \\ given \\  =  >  \frac{ \alpha }{ \beta }  =  \frac{a}{b} .....(3) \\  =  >  \frac{ \beta }{ \alpha }  =  \frac{b}{a} ........(4) \\  =  > adding \: (3) \: and \: (4) \: we \: get \\  =  >  \frac{ \alpha }{ \beta }   +   \frac{ \beta }{ \alpha }  =  \frac{a}{b}  +  \frac{b}{a}  \\  =  >  \frac{ \alpha  {}^{2}  +  \beta  {}^{2} }{ \alpha  \beta }  + 2 =  \frac{a {}^{2}  + b {}^{2} }{ab}  + 2 \\  =  >  \frac{ \alpha  {}^{2} +  \beta  {}^{2}   + 2 \alpha  \beta }{ \alpha  \beta }  =  \frac{a {}^{2} + b {}^{2}   + 2ab}{ab}  \\  =  >  \frac{ (\alpha  +  \beta ) {}^{2} }{ \alpha  \beta }  =  \frac{(a + b) {}^{2} }{ab}  \\  =  >  \frac{ (- p) {}^{2} }{q}  =  \frac{  ( - l) {}^{2} }{m}  \\  =  >  \frac{p {}^{2} }{q}  =  \frac{l {}^{2} }{m}  \\  =  > p {}^{2} m = l {}^{2} q \:  \: hence \: proved

HOPE it helps ✔️

Answered by Anonymous
30

We are given that

α / β = γ / δ (3)

Reciprocating both the sides, we'll get

β / α = δ / γ (4)

Adding (3) and (4), we'll get

=> (α / β) + (β / α) = (γ / δ) + (δ / γ)

=> (α^2 + β^2) /αβ = (γ^2 + δ^2) /γδ

Adding 2 on both the sides,

=> [(α^2 + β^2) /αβ] + 2 = [(γ^2 + δ^2) /γδ] + 2

=> (α^2 + β^2 + 2αβ) /αβ = (γ^2 + δ^2 + 2γδ) /γδ

=> (α + β)^2 /αβ = (γ + δ)^2 /γδ

Now, using α + β = -p, αβ = q, γ + δ = -r, γδ = m,

=> (-p)^2 /q = (-r)^2 /m

=> m.p^2 = q.r^2

Hence Proved.


nikhil4761: thanx
Similar questions