Math, asked by LostPrincess, 5 months ago

If the replacement set is {0, 1, 2, 3, 4, 5, 6, 7}, find the solution for each inequation
 \bf \: i) \:  \:  \:  \:  \:  \:  \:  \:  \frac{15}{2}  < 2x +  \frac{5}{2}
 \bf \: ii) \:  \:  \:  \:  \:  \:  \:  \: 4(x - 2) < 3x - 1
 \bf \: iii) \:  \:  \:  \:  \:  \:  \: n + 2 >  \frac{3n - 1}{2}
No spamming
spammers will be reported ​

Answers

Answered by mathdude500
2

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}}

\bf \: i) \: \: \: \: \: \: \: \: \frac{15}{2} < 2x + \frac{5}{2}

 \bf \: ii) \: \: \: \: \: \: \: \: 4(x - 2) < 3x - 1

 \bf \: iii) \: \: \: \: \: \: \: n + 2 > \frac{3n - 1}{2}

\small\bold\red{Solution \: of \: (i)}

 \frac{15}{2}  < 2x +  \frac{5}{2}  \\  \frac{15}{2}  -  \frac{5}{2}  < 2x \\  \frac{15 - 5}{2}   < 2x \\ 5 < 2x \\  =  >  \: x >  \frac{5}{2}  \\ so \:  x =  {3, 4, 5, 6, 7}

\small\bold\red{Solution \: of \: (ii)}

4(x - 2) < 3x - 2 \\ 4x - 8 < 3x - 2 \\ 4x - 3x <  - 2 + 8 \\ x < 6 \\ so \:  x = 0, 1, 2, 3, 4, 5

\small\bold\red{Solution \: of \: (iii)}

n + 2 >  \frac{3n - 1}{2}  \\ 2n + 4 > 3n - 1 \\ 2n - 3n >  - 1 - 4 \\  - n >  - 5 \\  =  >  \: n < 5 \\ so \: n \:  = 0, 1, 2, 3, 4

\huge \fcolorbox{black}{cyan}{♛hope \: it \: helps \: you♛}

Answered by BengaliBeauty
67

★ǫᴜᴇsᴛɪᴏɴ★

If the replacement set is {0, 1, 2, 3, 4, 5, 6, 7}, find the solution for each inequation

 \bf \: i) \: \: \: \: \: \: \: \: \frac{15}{2} < 2x + \frac{5}{2}

 \bf \: ii) \: \: \: \: \: \: \: \: 4(x - 2) < 3x - 1

 \bf \: iii) \: \: \: \: \: \: \: n + 2 > \frac{3n - 1}{2}

Answer:-

 \: \boxed  { \bf \: Solution \: for \: (i)}

 \bf \frac{15}{2}  < 2x +  \frac{5}{2}

  \bf \to \frac{15}{2}  -  \frac{5}{2}  < 2x

 \bf \to \frac{10}{2}  < 2x

  \bf\to \frac{10}{2 \times 2}  < x

 \bf \to \frac{5}{2}  < x

 \small \bf∴The \: solution \: set \: is \:   \{3,4,5,6,7 \}

\: \boxed  { \bf \: Solution \: for \: (ii)}

 \bf4(x - 2) < 3x - 2

 \bf \to4x - 8 < 3x - 2

 \bf \to4x - 3x < 8 - 2

 \bf \to \: x < 6

\small \bf∴The \: solution \: set \: is \:   \{0,1,2,3,4,5 \}

\: \boxed  { \bf \: Solution \: for \: (iii)}

 \bf \: n + 2 >  \frac{3n - 1}{2}

 \bf \to2(n + 2) > 3n - 1

 \bf \to2n + 4 > 3n - 1

 \bf \to2n - 3n >  - 1 - 4

 \bf \to - n >  - 5

 \bf \to \: n < 5

\small \bf∴The \: solution \: set \: is \:   \{0,1,2,3,4 \}

@BengaliBeauty

Feel free to ask your doubts anytime

Similar questions