Math, asked by drushthi, 3 months ago

if the root of the equation (b-c)x² + (c-a)x + (a - b) = 0 are equal prove that 2b = a + c​

Answers

Answered by amansharma264
8

EXPLANATION.

Roots of the equation.

⇒ (b - c)x² + (c - a)x + (a - b) = 0.

As we know that,

⇒ D = Discriminant Or b² - 4ac.

For equal roots : D = 0.

⇒ (c - a)² - 4(b - c)(a - b) = 0.

As we know that,

Formula of :

⇒ (x - y)² = x² + y² - 2xy.

Using this formula in equation, we get.

⇒ (c² + a² - 2ac) - 4(ab - b² - ac + bc) = 0.

⇒ c² + a² - 2ac - 4ab + b² + 4ac - 4bc = 0.

⇒ a² + b² + c² - 4ab - 4bc - 2ac = 0.

⇒ (c + a - 2b)² = 0.

⇒ c + a - 2b = 0.

⇒ 2b = a + c.

                                                                                                                           

MORE INFORMATION.

Nature of the roots of the quadratic expression.

(1) = Real and unequal, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal Or complex conjugate.

Answered by piyushnehra2006
0

Answer:

.Roots of the equation.

(b - c)x² + (c - a)x + (a - b) = 0.

D = Discriminant Or b² - 4ac.

D = Discriminant Or b² - 4ac.For equal roots : D = 0.

(c - a)² - 4(b - c)(a - b) = 0.

Formula of :

(x - y)² = x² + y² - 2xy.

(x - y)² = x² + y² - 2xy.Using this formula in equation, we get.

(c² + a² - 2ac) - 4(ab - b² - ac + bc) = 0.

c² + a² - 2ac - 4ab + b² + 4ac - 4bc = 0.

a² + b² + c² - 4ab - 4bc - 2ac = 0.

(c + a - 2b)² = 0.

c + a - 2b = 0.

2b = a + c.

2b = a + c.                                                                                       hope it helps you mate

Similar questions