Math, asked by khatridivya376, 3 months ago

Rationalise the Denominator
 \frac{1}{\sqrt{2}  +  \sqrt{3} }

Answers

Answered by Salmonpanna2022
2

Step-by-step explanation:

Given:-

 \frac{1}{ \sqrt{2} +  \sqrt{3}  }  \\  \\

What to do:-

To Rationalise the Denominator.

Solution:-

Let's solve the problem,

We have

 \frac{1}{ \sqrt{2} +  \sqrt{3}  }  \\  \\

The denominator is √2+√3. Multiplying the numerator and denomination by √2-√3, we get

⟹ \frac{1}{ \sqrt{2} +  \sqrt{3}  }  \times \frac{ \sqrt{2}  -  \sqrt{3} }{ \sqrt{2} -  \sqrt{3}  }  \\  \\

⟹ \frac{ \sqrt{2}  -  \sqrt{3} }{( \sqrt{2} +  \sqrt{3})( \sqrt{2}  -  \sqrt{3}  ) }  \\  \\

⬤ Applying Algebraic Identity

(a+b)(a-b) = a² - b² to the denominator

We get,

⟹ \frac{ \sqrt{2} -  \sqrt{3}  }{( \sqrt{2}  {)}^{2} - ( \sqrt{3}  {)}^{2}  }  \\  \\

⟹ \frac{ \sqrt{2} -  \sqrt{3}  }{2 - 3}  \\  \\

⟹ \frac{ \sqrt{2} -  \sqrt{3}  }{1}  \\  \\

⟹ \sqrt{2}  -  \sqrt{3} \:  \:  \:   \tt{Ans.} \\  \\

Hence, the denominator is rationalised.

  • I hope it's help you...☺

Know more Algebraic Identities:-

(a+ b)² = a² + b² + 2ab

( a - b )² = a² + b² - 2ab

( a + b )² + ( a - b)² = 2a² + 2b²

( a + b )² - ( a - b)² = 4ab

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

a² + b² = ( a + b)² - 2ab

(a + b )³ = a³ + b³ + 3ab ( a + b)

( a - b)³ = a³ - b³ - 3ab ( a - b)

If a + b + c = 0 then a³ + b³ + c³ = 3abc

Similar questions