if the root of the quadratic equation ax2 - 6x+ 3 =0 are equal then find the value of 2a
Answers
Answered by
1
Step-by-step explanation:
3x
2
+ax−2=0
Since, one root is 1, then x=1
⇒ 3(1)
2
+a(1)−2=0
⇒ 3+a−2=0
⇒ a+1=0
⇒ a=−1
⇒ Now, it is given that ax
2
+6ax−b=0 has equal roots.
∴ b
2
−4ac=0
⇒ (6a)
2
−4(a)(−b)=0
⇒ 36a
2
+4ab=0
⇒ 36(−1)
2
+4(−1)b=0 [ Substituting a=−1 ]
⇒ 36−4b=0
⇒ 4b=36
∴ b=9
Similar questions