If the roots of ( a-b)×+(b-c)×+(c-a)=0 are equal, prove that 2a=b+c
Answers
Answered by
1
Step-by-step explanation:
(a - b)x² + (b - c)x + (c - a)=0
Comparing with quadratic equation with
Ax²+Bx+C=0
A=(a - b), B=(b - c), and C=(c - a)
We know that when roots are equal then Discriminant(D) = 0
∴ D = 0
⇒b² - 4ac = 0
⇒(b - c)² - 4(c - a)(a - b) = 0
⇒b² + c² - 2bc - 4ac + 4a² - 4ab +4bc = 0
⇒4a² + b² + c² - 4ab - 4ac + 2bc = 0
⇒(-2a)² + (b)² + (c)² + 2[b×(-2a) + (-2a)×c + b×c] = 0
[∵x²+y²+x²+2(xy+yz+za) = (x+y+z)²]
⇒(b - 2a + c)² = 0
⇒b - 2a + c = 0
⇒b + c = 2a
∴ 2a = b + c (Hence Proved)
_______________________
//Hope This will Helped You//
//Please Mark it as Brainliest//
Similar questions