If the roots of quadratic equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a) are equal then show that a=b=c
Answers
Answered by
5
Hey mate.
=======
Given,
(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)
If we multiply out our given equation we get,
3x²-2(a+b+c)x+ab+bc+ca=0
If roots are equal,
B²=4AC
=> 4(a+b+c)²=4*3(ab+bc+ca)
=>(a+b+c)²=3(ab+bc+ca)
=> a²+b²+c²+2(ab+bc+ca)=3(ab+bc+ca)
=> a²+b²+c²=(ab+bc+ca)...(I)
Now,
If b=a , c=a [a=b=c]
(I) becomes ,
a²+(a²)+(a²)=a(a)+(a)(a)+(a)a
WHICH IS TRUE.
∴ASSUMPTION is correct.,
that is a=b=c .
#racks
=======
Given,
(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)
If we multiply out our given equation we get,
3x²-2(a+b+c)x+ab+bc+ca=0
If roots are equal,
B²=4AC
=> 4(a+b+c)²=4*3(ab+bc+ca)
=>(a+b+c)²=3(ab+bc+ca)
=> a²+b²+c²+2(ab+bc+ca)=3(ab+bc+ca)
=> a²+b²+c²=(ab+bc+ca)...(I)
Now,
If b=a , c=a [a=b=c]
(I) becomes ,
a²+(a²)+(a²)=a(a)+(a)(a)+(a)a
WHICH IS TRUE.
∴ASSUMPTION is correct.,
that is a=b=c .
#racks
joejnj1:
Brainpower
Similar questions