if the roots of the equation (a^2+b^2)x^2-2(ac+bd)x+(c^2+d^2)=0 are equal prove that a/b=c/d
Answers
Answered by
8
p(x)=(a²+b²)x²-2(ac+bd)x+(c²+d²) ⇒ 0
as the roots are equal
Discriminant ⇒ b²-4ac=0
(-2(ac+bd))²-4(a²+b²)(c²+d²)=0
(4(ac+bd)²)-4((ac)²+(ad)²+(bc)²+(bd)²)=0
(2ac)²+8acbd+(2bd)²-(2ac)²-(2ad)²-(2bc)²-(2bd)²=0
(2ad)²+(2bc)²=8acbd
(2ad)²+(2bc)²-8acbd=0
(It is of the form a²+b²-2ab=(a-b)²)
(2ad-2bc)²=0
2ad-2bc=0
2ad=2bc
(cancelling 2 on both sides)
ad=bc
a/b=c/d
HENCE PROVED
:) Hope this helps!!!!!!!!!!!!!
as the roots are equal
Discriminant ⇒ b²-4ac=0
(-2(ac+bd))²-4(a²+b²)(c²+d²)=0
(4(ac+bd)²)-4((ac)²+(ad)²+(bc)²+(bd)²)=0
(2ac)²+8acbd+(2bd)²-(2ac)²-(2ad)²-(2bc)²-(2bd)²=0
(2ad)²+(2bc)²=8acbd
(2ad)²+(2bc)²-8acbd=0
(It is of the form a²+b²-2ab=(a-b)²)
(2ad-2bc)²=0
2ad-2bc=0
2ad=2bc
(cancelling 2 on both sides)
ad=bc
a/b=c/d
HENCE PROVED
:) Hope this helps!!!!!!!!!!!!!
aswathydineshachu:
thnx a lot
Similar questions