If the roots of the equation (a - b)x^2 + (b - c) x + (c - a) = 0 are equal. Prove that 2a = b + c.
Answers
Answered by
1
Answered by
0
Answer:
(a−b)x
2
+(b−c)x+(c−a)=0
\mathsf {T.P\:2a = b + c}T.P2a=b+c
\mathsf {B^2 - 4AC = 0}B
2
−4AC=0
\mathsf {(b - c)^2 - [4(a - b)\:(c - a)] = 0}(b−c)
2
−[4(a−b)(c−a)]=0
\mathsf {b^2 - 2bc + c^2 - [4(ac - a^2 - bc + ab)] = 0}b
2
−2bc+c
2
−[4(ac−a
2
−bc+ab)]=0
\implies \mathsf {b^2 - 2bc + c^2 - 4ac + 4a^2 + 4bc - 4ab = 0}⟹b
2
−2bc+c
2
−4ac+4a
2
+4bc−4ab=0
\implies \mathsf {b^2 + 2bc + c^2 + 4a^2 - 4ac - 4ab = 0}⟹b
2
+2bc+c
2
+4a
2
−4ac−4ab=0
\implies \mathsf {(b + c - 2a)^2 = 0}⟹(b+c−2a)
2
=0
\implies \mathsf \blue {b + c = 2a}⟹b+c=2a
Step-by-step explanation:
hope it will be help you. ........
Similar questions