Math, asked by firstabkumar, 1 year ago

If the roots of the equation (a2+b2)x2-2(ac+bd)x+(c2+d2)=0 are equal, prove that a/b=c/d .

Answers

Answered by kiarafowler0304
24

Answer:

( a² + b²)x² -2( ab + cd)x +( c² + d²) = 0

roots are equal so, D = b² -4ac =0

{2(ab + cd)}² -4(a² +b²)(c² + d²) =0

4(ab+ cd)² -4(a² + b²)(c²+ d²) =0

( a²b²+c²d² +2abcd ) -a²c²-a²d²-b²d² -b²c² =0

-a²c² -b²d² + 2abcd =0

-( a²c² + b²d² -2abcd) =0

{(ac-bd)²} =0

ac -bd =0

ac = bd  

a/b = d/c

Step-by-step explanation:

      OR

( a² + b²)x² -2( ab + cd)x +( c² + d²) = 0

roots are equal so, D = b² -4ac =0

{2(ab + cd)}² -4(a² +b²)(c² + d²) =0

4(ab+ cd)² -4(a² + b²)(c²+ d²) =0

( a²b²+c²d² +2abcd ) -a²c²-a²d²-b²d² -b²c² =0

-a²c² -b²d² + 2abcd =0

-( a²c² + b²d² -2abcd) =0

{(ac-bd)²} =0

Similar questions