If the roots of the equation (a2 + b2) x2 – 2(ac + bd) x + (c2 + d2) = 0 are equal, prove that /
= /
.
Answers
Full question :
If the roots of the equation (a² + b²) x² – 2(ac + bd) x + (c² + d²) = 0 are equal, prove that a/b = c/d
.
Solution :
( a² + b² ) x² - 2 ( ac + bd ) x + ( c² + d² ) = 0
Comparing with ax² + bx + c = 0 we get :
a = a² + b²
b = - 2 ( ac + bd )
c = c² + d²
When roots are equal :
b² = 4 ac
⇒ ( - 2 ( ac + bd ) )² = 4( a² + b² )( c² + d² )
⇒ ( - 2)²( ac + bd )² = 4 ( a² + b² )( c² + d² )
Use the expansion of ( a + b )² = a² + b² + 2 ab
⇒ 4 ( ac + bd )² = 4 ( a²c² + a²d² + b²c² + b²d² )
Cancel 4 both sides :
⇒ ( a²c² + b²d² + 2 abcd ) = a²c² + a²d² + b²d² + b²c²
⇒ a²d² + b²c² - 2 abcd = 0
Use the expansion of a² + b² - 2 ab = ( a - b )²
⇒ ( ad - bc )² = 0
Take square root both sides :
⇒ ad - bc = 0
⇒ ad = bc
⇒ a/b = c/d
Hence proved !
Your question is incomplete
Complete question
If the roots of the equation (a2 + b2) x2 – 2(ac + bd) x + (c2 + d2) = 0 are equal, prove that
a/b= c/d.
refer to attachment for answer
thanks