Math, asked by adam9063, 10 months ago

If the roots of the equation (a² +b² ) x² + 2(bc-ad)x+c²+d²=0 are equal, show that ac +bd=0.

Answers

Answered by IamIronMan0
1

Answer:

For equal root discriminate of above equation must be zero i.e.

 for \:  \: p {x}^{2} + qx + r = 0  \\ {q}^{2}  - 4pr = 0 \\  \\ (2(bc - ad)) {}^{2}  - 4( {a}^{2}  +  {b}^{2} )( {c}^{2}  +  {d}^{2} ) = 0 \\  \\ 4 {b}^{2} {c}^{2}   + 4 {a}^{2}  {d}^{2}  - 8abcd - 4 {a}^{2}  {c}^{2}  - 4 {d}^{2} {a}^{2}  \\  - 4 {b}^{2}  {c}^{2}  - 4 {b}^{2}  {d}^{2}  = 0 \\  \\  - 4 {a}^{2}  {c}^{2}  - 4 {b}^{2}  {d}^{2}  - 8abcd = 0 \\   \\ divide \:  \: by \: \:   - 4\\ (ac) {}^{2}  + (bd) ^2+ 2(ac)(bd) = 0 \\  \\ (ac + bd) { }^{2}  = 0 \\ \\  \pink{ac + bd = 0}

Similar questions